Robust Heat-Flux Sensors for Coal-Fired Boiler Extreme Environments

Prof. Oded RabinProf. Peter SunderlandMaterials Science and EngineeringFire Protection EngineeringUniversity of Maryland, College Park

2020 UCR/HBCU-OMI Joint Kickoff Meeting

Project Objectives

- Develop robust heat-flux measurement systems capable of operating in the challenging high-temperature, corrosive environments of the boilers of coal-fired power plants.
- Support the **training of graduate and undergraduate students** in STEM disciplines, preparing them to apply science and engineering principles to solve real-life problems.

Objectives' Alignment to DOE/NETL Program

- Novel sensing and controls concepts for continuous, online monitoring for coal-based power generation processes undergoing flexible operation. (FOA-2193)
- Heat-Flux Sensing
 - Cost-effective, distributed network of sensors.
 - Data used to optimize operation and improve efficiency.
 - Data used to predict imminent failure and decrease downtime.
- Technology Barriers
 - Direct measurement: Compact heat-flux sensors are limited to ~650degC.
 - Indirect measurement: Complex system, lack of real-time data.

Technical Approach

- Prototyping the wire-wound Schimdt-Boelter-style sensor head
- Prototyping the Transverse Seebeck Effect sensor head

Technical Approach

- Prototyping the wire-wound Schimdt-Boelter-style sensor head
- Prototyping the Transverse Seebeck Effect sensor head
- Modeling of the Thermo-Mechanical Properties of the sensor head
- System design
- Testing and Calibration

Project Participants

- PI: Oded Rabin, Materials Science and Engineering
- Co-PI: Peter Sunderland, Fire Protection Engineering
- Graduate student (1)
 - To start in Spring 2021.
- Undergraduate students (3)
 - E. J., Senior in Fire Protection Engineering Sensor head design
- Technical staff (PT)
 - Machining and rig construction

Project Timeline from SOPO

mse.umd.edu

fpe.umd.

				FY 2021		FY 2022				FY 2023					
			Lead Person	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
		TASKS		1-3	<mark>4-6</mark>	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-3 0	31-33	34-36
	1.0	Project Management and Planning	PD												
1	1.1	Project Management Plan	PD												
1	1.2	Technology Maturation Plan	PD												
	2.0	Prototyping the Wire-Wound Schmidt-Boelter- Style Sensor Head	PD												
[2.1	Materials Procurement	Staff												
	2.2	Ceramic Machining	Staff												
	2.3	Thermopile Wire Fabrication	PD				X								
	2.4	Sensor Head Assembly	All								1		8		
	3.0	Prototyping the Transverse Seebeck Effect Sensor Head	PD												
	3.1	Materials Procurement	Staff										-		
	3.2	Ceramic Machining	Staff												
	3.3	Single Crystal Preparation	PD					X							
Ī	3.4	Sensor Head Assembly	All												
	4.0	Modeling of the Thermo-Mechanical Properties of the Sensor Heads	co-PI				Χ								
	5.0	System Design	PD						X						
	6.0	Testing and Calibration	co-PI												
Γ	6.1	Design and Set-Up of Test Facilities	staff												
	6.2	Low-Temperature Heat Flux Signal Testing	co-PI												
	6.3	High-Temperature Resilience Testing	co-PI			0						Х			
	6.4	High-Temperature Heat Flux Signal Testing	co-PI												
	6.5	Heat Flux-to-Electrical Signal Transfer- Function Analysis	PD												
du	6.6	High-Temperature Heat Flux Measurement: Testing against Commercial Sensor	co-PI												X
	7.0	Presentations, Intellectual Property, and Partnerships	All												

Deliverables from SOPO

Task / Subtask Number	Deliverable Title	Due Date
1.1	Project Management Plan	Q1 2021
1.2	Technology Maturation Plan	Q1 2021, Q4 2023
6.2	Report: Low-Temperature Sensor Performance	Q1 2023
6.4	Report: High-Temperature Sensor Performance	Q4 2023
	Quarterly Report	Each quarter

