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e Short introduction

* Why use quantum information science for sensors?

* Predictive quantum simulations for candidate materials
® Preliminary work with quantum control calculations

e What's next?
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* B.S. in Physics and Chemistry — Rice University (2001)
® Ph.D. in Physical Chemistry — M.I.T. (2007)
e Staff Scientist Sandia National Labs (2007-2013) -

e Associate Prof. at UC Riverside
Physics/MatSci/Chemistry/ChemE (2014-now)

* Visit us (virtually) at S .
http://www.bmwong-group.com e
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UC Riverside (UCR)

o Official Hispanic Serving Institution

41.5% | Hispanic or Latino
* Demographics: 33.8% | Asien
11% | White

5.6% | Two or More Races

® 57% ftirst-generation students
to attend college

3.4% | International

3.3% | Black or African American
1.1% | Unknown

Py Designated as //top_performlng 0.2% | Native Hawaiian or Other Pacific Islander
institution for African American &
Latino/a students” by The Education

Trust — 1 of only 3 institutions in the nation

0.1% | Native American or Alaskan Native
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General Project Objectives

ﬁnproving Sensing Modalities in Fossil Energy Infrastructuren

( Quantum Information & Control \
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NV—Cen’rer Sensors

e Nitrogen vacancy (NV) centers: structural point defects in bulk carbon

* Contain stable, localized electron spin that can be used as sensor

e Coherence signals can persist at 700 — 1000 K
(essential for harsh fossil enerqy environments)

e Can be controlled with electromagnetic fields




NV—Cen’rer Sensors (cont.)

* NV centers near the surface have not been thoroughly explored

e Defects at surface can enable sensitive detection of chemical analytes in
fossil energy infrastructures (discussed later)
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NV-center in
diamond lattice
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NV-center sensor material
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DiVincenzo's Criterio

* DiVincenzo outlined 3 necessary conditions for quantum sensor

e (1) Must have discrete resolvable energy levels separated by finite
transition energy

e (2) Must be possible to initialize sensor into well-known state and read out

e (3) Can be coherently manipulated, leading to transitions between energy
levels
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DiVincenzo's Criteria (cont.)

* Approaches in this project obey all 3 DiVincenzo’s criteria:

e (1) Electron spin in NV center can be excited to quantized energy states v/

e (2) Electrons in NV centers can be initialized with electromagnetic pulse,
which can be simulated with quantum control algorithms v/

e (3) NV center spin state has long coherence time with added advantage of
sub-nanometer spatial resolution v
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Near-Surface NV-Centers

e Current resolution of NV-center sensors ~(5 nm)? (size of large protein)

_ MpoV3cos?0+1
e Dipolar magnetic field B
P & dip — ATT 73
. 1 o e e Sample v Detection volume
e Since Bgip~ =, sensitivity can be P i ~(5 nm?
Sensor

increased 3 orders of magnitude by # |~5 nm
reducing distance of NV center from M,cmwave NV conter “c

surface by factor of 10

Fluorescence
spin readout
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Initial NV-Center Configurations

e Use DFT to down-select initial NV-center configurations

examples of NV-center
configurations near top
surface of lattice

e Carry out ab initio MD at various temperatures to test their stability

11



Ground vs. Excited-State QM

e Ground-state QM can do this:

Relative energy (eV)

Potential Energy Surfaces

02r

— PZ-SIC
—e& CCsD

— MO6-HF

— & CCSD_CCSD(T)-SP
=& MP2_CCSD(T)-SP

Reaction coordinate

Z. Ali & B. Wong, Nature Comm. 9, 4733 (2018)

J. Guo & B. Wong, ACS Nano 12, 9775 (2018)

e Ground-state QM cannot do this:

Electronic Excited States

0T,0=0"

g

0T,06=0° 25T,0=29.9°

B. Wong & G. Scholes, PNAS 117, 11289 (2020)

Real-Time Electron Evolution

N. Illawe & B. Wong, |. Mat. Chem. C 6, 5857 (2018)

Electronic Properties

G

B. Wong & J. Azoulay, Science Advances 5, eaav2336 (2019)

Light-Matter Interactions
= R

12
C. Lian & B. Wong, J. Phys. Chem. Lett. 7, 4340 (2019)
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Excited-State QM tor Dynamics

® (1) NV-center configurations down-selected with DFT

* (2) Excited-state QM will probe real-time interactions between NV
centers & EM fields to understand sensor mechanisms

* Electromagnetic radiation (i.e., light) has two components

Direction of

e Magnetic field (B) p°'ar‘2§‘°”
e Electric field (E) i \?|
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Related Work on Excited State QM

e Can we control polarization switching with optical pulses?

* Excellent application of our periodic
RT-TDDEFT approach

* Focus on BaTiO; as prototypical example

1
e Applied laser pulse: W\W J\[\AN»
al

E(t) = Ejcos(wt)exp [— (¢

— tg)?
2072 14
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“Polarization Switching

e With p(t) converged, ionic movement approximated via Hellmann-
Feynman forces using Ehrenfest Dynamics

~0.4-

0 50 100 150 200
Time (fs)

fluence (MW/cm?)
21.94
76.78
87.75

We achieve polarization switching
(P changes sign) when
fluence = 87.75 MW/cm?

C. Lian & B. Wong, J. Phys.Chem. Lett. 10, 3402 (2019)  *°
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Ferroelectric Summary

e Simplified take-home message:

THE JOURNAL OF

PHYSICAL CHEMISTRY
A e LELLELS
n A <
a c Pl
— o
0 s Bl
5" 2l P17 PT
» >
-1 0 1 0 0.5 1
Polarization (arb. unit) Time (ps)
laser-tune PES to laser can reversibly e s
change polarization switch polarization back!

C. Lian & B. Wong, |. Phys.Chem. Lett. 10, 3402 (2019)
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Optimal Control Fields

* Excited-state QM is an initial value problem

* Can we ask the inverse question: “Can we construct fields that enable
desired behavior in NV center?”

NIC-CAGE: Novel
Implementation of Constrained
Calculations for Automated
Generation of Excitations

Computer Physics Communications
Volume 258, January 2021, 107541

NIC-CAGE: An open-source software package for A. Raza. C. Hong, X. Wang, A.

predicting optimal control fields in photo-excited Kumar, C. R. Shelton, B. M. Wong,

chemical systems #, %% Comput. Phys. Commun. 258, 107541
(2021)

Akber Raza * 1, Chengkuan Hong ™ !, Xian Wang ¢, Anshuman Kumar ¢, Christian R. Shelton °, Bryan M. Wong * ©
defom@ 17
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NIC-CAGE Program

e Calculates fields that enables transition to desired final state ‘1/) f>
® Uses scheme from GRAdient Pulse Engineering (GRAPE) algorithm
€..14

J*;

Ty temporal shape of E(t)

11 I; vertical arrows = gradients
t indicating how amplitude
MM 1 changes to maximize

FI T transition probability

2
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NIC-CAGE Program (cont.)

e Propagate TDSE to get final state Yy_1(x,t = T) and maximize J:

T

JYn-1, €] = |<1/Jf|l/JN_1)|2 —j a - €(t)’dt <+—— fluence penalty
0

e NIC-CAGE provides new analytic derivatives of J[Py_4, €]

dE]+1/2 ( 1_[ H > 7{11] ‘ [ﬂ@(¢j+1 + ¢j)] with H,, =1+ ,‘H‘lx, (n +%> T]

k=j+1

* Take-home message: no matrix exponentials!
— Much faster than Octopus and QuTiP software packages

19
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NIC-CAGE Examples

* Single anharmonic potential well
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NIC-CAGE Examples (cont.)

* Single anharmonic potential well

—_— - —l/f = 5
—e—[yn1?

¥
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x (a.u.)

v=0—>v=>5

red: target ||
blue: NIC-CAGE propagation
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NIC-CAGE Examples (cont.)

® Anharmonic double-well potential (restricted propagation time)

%1073
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Conclusion & Acknowledgements

* Predictive quantum simulations provide rational guidance for
constructing quantum sensors for fossil energy infrastructures

* Quantum information science almost perfect application of excited-state
quantum calculations

* Supported by UCR/HBCU DE-FE0031896
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Web: http://bmwong-group.com

E-mail: bryan.wong@ucr.edu
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