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The Need for Energy Storage
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The increased share of feed-in from variable and non-
dispatchable renewable energies results in complex
challenges for the energy system.

In addition to other options such as grid and demand-side
management, flexible conventional power generation plays
a key role for ensuring adequate system stability.

Energy storage integrated with the plant (IES) is an
option that will play an important role in improving the
flexibility of fossil power plants.

IES partially decouples the plant power output from the
boiler firing rate, thus:

= improving flexibility of the plant (plant dynamic response)

= allowing load changes at constant or nearly constant
firing rate, reducing cycling and cycling damage

= allowing plant operation closer to the design
» time-shifting peak power generation

* improving plant performance and economics
= reducing emissions



Benefits of Integrated Energy Storage

Time-shifting peak power generation Minimize (Eliminate) Load Cycling

TIME-SHIFTING STEAM TO MEET PRODUCTION REQUIREMENTS

Discharged energy
aed Hybrid Plant Response
- Coal Plant Response
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From the power plant perspective, enhancing the
plant flexibility would result in a higher profitability due 88 1 _
to reduced losses at minimum load operation, Copyright CES, Ltd
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Flexible Power Plant Operation

¢ Off'deSign (ﬂeX|b|e) Opel’atiOH of coal- " Dimensions of flexible power plant operation
fired units contributes to lower plant
efficiency, lower availability, and
higher O&M costs.

* Flexible power plant operation
comprises three dimensions:
= Low minimum load
= Short and frequent shut-downs and start-ups
= Frequent unit ramping and cycling
Load cycling also refers to providing primary and

secondary frequency control. 5 Relative
. 2 Y Hot start Warm start Cold start dam age Caused
» Extended operating load range 4o\ g e by cycling
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Source: “TOOLBOX: Compilation of Measures for the Flexible Operation of Coal-Fired LL2~current “advertised" low load 5
Power Plants”, VGB Power Tech, VGB-B-033, March 2018 LL3~lowest load at which the unit can remain online



Project Objectives

The objective of this project is to analyze a set of energy storage (ES) options
(technologies) and determine their impact on the operation and economics of a
representative coal-fired power plant. The specific objectives include:

« Establish a Refence plant design and apply it to the PIJM and MISO energy markets
to determine the dispatch and production costs associated with reference design.

= The reference plant will establish a benchmark for the technical and economic analysis which can
be used for other fossil fuel facilities.

= The coal-fired steam facility represents the greatest potential benefits for an integration of ES and
can be a basis for other fossil plant designs.
 Integrate the various ES technologies into the reference plant design and determine
the dispatch and production costs and economic benefits associated with IES.
= The economic benefits due to integrated energy storage and increased plant flexibility include:

Improved operating efficiency and system reliability
Lower operating costs

Efficient plant participation in frequency control and other ancillary services
Reduced emissions (CO, and non-GHG)

vVvVvyYyYy



Energy Storage Options Selected for Analysis

 Thermal Energy Storage (TES)
* Ruths steam accumulator (RSA)

= Sensible heat storage:

» LP Condensate Storage
» Molten Salt
» Solid Media

* Liquid Air (Cryogenic) Energy Storage (LAES or CES)
* Integrated with a power plant
= Stand alone version will not be analyzed

« Battery Energy Storage in combination with Super-capacitors
= Batteries provide capacity, capacitors provide fast response

« Hydrogen Energy Storage (H,ES)



Ruths Steam Accumulator (RSA)

Hot Reheat Steam « RSAis a TES technology characterized
1 with variable pressure operation and the
Y

release of saturated steam when
Cold Reheat
Steam

discharged.

« RSA can provide high power output and
very good dynamic response with
(— relatively limited storage capacity*.

« During RSA charging, plant power
output is decreased.

Coal _ _I T S « RSA discharging results in fast

' =T increase in power output.

‘ 7 BeR » The magnitude of load increase-
: BFP _ To decrease depends on the RSA storage
Stack  capacity.

Condenser

Main Steam

apH [ ]

[EsP] ] s . . .
| FD:Fa,, D Fan  Integrating RSA with a coal-fired power
_ - plant offers improvement in the short-
Combustion Feb term dynamic behavior of the plant,
enables fast load changes, and plant
RSA is charged by the cold reheat (CRHT) steam and discharged to the steam participation in the primary frequency

extraction line for HP FWH 2. control. .



Low Pressure (LP) Condensate Storage

Hot Reheat Steam

HP .
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When plant power output
needs to be reduced, the
storage tanks are filled with
hot condensate, taken from
the outlet stream of the
feedwater storage tank
(FWT).

Storage tanks operate at low
pressure.

The condensate mass flow
through the LP FWHSs to
FWT is increased.

Steam extractions from the
IP and LP turbines are
increased, reducing power
output.



Molten Solar Salt TES
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Solid State (SS) TES

2,942,815 W

LP5

W: Flowrate, Ilbm/h
T: Temperature, F
P: Absolute Pressure, psia
H: Enthalpy, Btu/lbm

Steam

—  Water

Plant Performance Summary
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* When a reduction in plant power output is

needed, TES is charged by the steam
extracted from the steam turbine cycle
reducing steam flow through the IP and LP
turbines and decreasing power output.

* When the plant power output needs to be

iIncreased, a portion of the HP FWH?7 drain
Is diverted through the TES where is
heated and evaporated by the stored heat.
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Liquid Air Energy Storage (LAES)

Hot Reheat Steam

« When plant power output needs to be
decreased, LAES is operated in the
charging mode where part of the plant
power output is used for air compression.

Condenser

— « The compression heat is used for
feedwater heating to improve system
efficiency and simplify the LAES system
because hot storage is not needed.

Coal * When higher plant power output is
needed, LAES is discharged by pumping
Combustion - Gasl liquid air from the storage tank,
R > o m. evaporating it, and superheating it by
I, using steam extracted from the HP
turbine. Condensed HP steam is used to
heat the feedwater.

By storing energy in the liquid air tank
and discharging it when power is needed,
LAES acts as a buffer absorbing part of
the variations load profile the plant needs

Liauidair () Lidfia to follow thus increasing plant flexibilit
| LAES Discharging - “_ LAES Charging el 2 ”

Cold Reheat
Steam

Main Steam

Plant power Plant power
Air output decreases S output decreases
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Battery- Super-capacitor Energy Storage

Capacitors store energy g
as an electrostatic charge
between two plates
separated by a dielectric.
They have low voltage, o
low energy but high-

power density. Can be
charged & discharged

very quickly.

Super-capacitors get their bigger capacitance from
plates with a bigger, effective surface area (advances
In material science) and smaller distance between
plates (because of the very effective double layer).

Can be charged and discharged any number of times
(close to a million), have little or no internal resistance,
store and release energy without using much energy,
and work at very close to 100% efficiency (97-98% is
typical) and have capacitance running in several
thousand Faradays.

Super-capacitors have very high power but limited
energy. In combination with a battery, super-capacitors
provide very high power, and the battery provides
longer duration energy.

Commercial products are available for use with solar
and wind generators that need instantaneous power to
compensate for sudden variations in these power
output; and meet need for longer duration energy

when solar and wind are not present.
13



Technical Approach

 To achieve the project objectives, project tasks are divided into two groups.

Technical Analysis
« Build a first principles model of a reference plant to determine baseline performance
(plant performance w/o IES) over the load range.

= Use model results to develop baseline performance curves: Input-Output (I-O) and Incremental
Cost (IC) curves.

 Integrate ES into the reference plant model and determine plant performance.
» Develop modified I-O and IC curves for a plant with IES (Integrated Energy Storage).

Economic Analysis

« Use IC curves in combination with actual grid and market price data to simulate operation
of the reference plant in the PJM and MISO energy markets and determine plant
economics without and with IES under realistic market conditions.

= Economic benefits will include cost savings due to the efficiency improvements, emission reduction,
and additional revenues due to increased plant flexibility from the integration of ES.

= The ancillary services revenues will largely result from the improved plant IC curves as applied to
system dispatch. 14




Technical Approach - Plant Model

Model of the Reference Plant (650 MW subcritical)
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Technical Approach - Preliminary Results

Heat Input [MBTU/hr]

Input-Output (I-O) Curve Heat Rate (HR) Curves
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Project Tasks

» Task 1.0 — Project Management
= Subtask 1.1 — Project Management Plant (PMP) » Done

e Task 2.0 — Determination of Baseline Performance

= Subtask 2.1 - Development of Reference Plant Model » In Progress

A model of the reference coal-fired power plant without energy storage will be developed.
Model results will be verified against plant design data. The model will be used to determine
benchmark performance of the Reference plant and establish baseline Input/Output (I-O) and
Incremental Cost (IC) curves.

= Subtask 2.2 - Determination of Baseline Economic Performance

An economic analysis of the selected Reference plant without energy storage will be
performed using the IC curve developed in Subtask 2.1 in combination with the actual grid and
market price data to simulate operation of the Reference plant in selected energy markets and
determine baseline plant economics under realistic operating conditions. A plant-level and

system-level analyses will be performed.
17



Project Tasks

» Task 3.0 — Integrated Thermal Energy Storage (TES)
= Subtask 3.1 — Determination of Technical Performance for Thermal Energy
Storage (TES) Options

Integrate the selected energy storage options into the reference plant model developed in
Subtask 2.1 to determine the effect of energy storage on plant operation and performance.
The selected energy storage options include:

» Subtask 3.1.1 — Ruths Steam Accumulator (RSA)
» Subtask 3.1.2 — Low Pressure Condensate Storage
» Subtask 3.1.3 — Molten Salt TES

» Subtask 3.1.4 — Solid-State TES

= Subtask 3.2 - Determination of Economic Performance for TES

Economic analysis of the integrated TES options from Subtasks 3.1.1 to 3.1.4 to determine
plant economics under realistic energy market conditions. Determine the effect of TES storage

capacity on economic performance. The analysis will be divided into Subtasks 3.2.1 to 3.2.4. »



Project Tasks

» Task 4.0 — Integrated Liquid Air Energy Storage (LAES)
= Subtask 4.1 — Determination of Technical Performance
= Subtask 4.2 — Determination of Economic Performance

* Task 5.0 — Battery/Supercapacitor Energy Storage
= Subtask 5.1 — Determination of Technical Performance
= Subtask 5.2 — Determination Economic Performance

» Task 6.0 — Hydrogen Energy Storage (H,ES)
= Subtask 6.1 — Determination of Technical Performance
= Subtask 6.2 — Determination Economic Performance

« Task 7.0 — Analysis of Results

19



Project Schedule

Joint Techno-Economic Analysis

Task Task Name/Activity Assigned Year1 Year 2
No. Resources| w1 [ m2 [ m3 [ ma [ ms [ me | m7 [ ms [ mo [mio]mar|maz| ma | m2] m3 | ma] ms | ms [ m7 [ ms | mo [mio]mi1[m1z
Task 1.0 - Project Management and Planning unvcc and v | |
Task 2.0 - Determination of Basic Performance
Subtask 2.1 Development of the Reference Plant Model UNCC and LU
Subtask 2.2 Determination of Baseline Technical Performance UNCC and LU _
Subtask 2.3 Determination of Baseline Economic Performance CES
Milestone 1 *
Task 3.0 - Integrated Thermal Energy Storage (TES)
Subtask 3.1 TES —Technical Performance UNCC
3.1.1 Reference Plant with Integrated Ruths Steam Accumulator UNCC
3.1.2 Reference Plant with Integrated Pressurized Water TES UNCC
3.1.3 Reference Plant with Integrated Molten Salt TES UNCC
3.1.4 Reference Plant with Integrated Solid-5tate TES UNCC
3.1.5 Reference Plant with Integrated TES Combinations UNCC
Milestone 2 *
Subtask 3.2 TES — Economic Performance CES
3..2.1 Reference Plant with Integrated Ruths Steam Accumulator  |CES
3.2.2 Reference Plant with Integrated Pressurized Water TES CES
3.2.3 Reference Plant with Integrated Molten Salt TES CES
3.2.4 Reference Plant with Integrated Solid-State TES CES
3.2.5 Reference Plant with Integrated TES Combination CES
Milestone 3 *
Task 4.0 - Integrated Liquid Air Energy Storage (LAES)
Subtask 4.1 LAES —Technical Performance LU _
Subtask 4.2 LAES —Economic Performance CES
Milestone 4 *
Task 5.0 - Battery/Supercapacitor Energy Storage
Subtask 5.1 Battery/Supercapacitor Storage - Technical Performance LU and CES _
Subtask 5.2 Battery/Supercapacitor Storage - Economic Performance CES
Milestone 5 *
Task 6.0 - Hydrogen Energy Storage (H2ES)
Subtask 6.1 Hydrogen —Technical Performance LU and APCI _
Subtask 6.1 Hydrogen —Economic Performance CES, LU, APCI
Milestone 6 *
Task 7.0 - Anlysis of Results
Analysis of Technical Results and Final Report UNCC and LU _
Analysis of Economic Results CES
[
*

Milestone 7

UNCC, LU, CES

Subtasks 3.1 and 3.2 are inter-
related and will be performed in
a parallel-staggered sequence
and in close cooperation
between UNCC and CES.

Stars denote milestones. 20



PMP: Milestones

Planned
Task Milestone Title & Description Com_p Bl Dgte Verification
(relative to project method
start)
Milestone 1: Determination of Basic 8 months after
2.0 :
Performance project start date
30 Milestone 2: Integrated TES — Technical 21 months after
' Performance (Subtasks 3.1.1 and 3.1.4) project start date C ot
30 Milestone 3: Integrated TES — Economic 23 months after re:urﬂgicr)etﬁgo;ifual
' Performance (Subtasks 3.2.1 and 3.2.4) project start date

energy market

12 months after o
indicators, results

4.0 Milestone 4: Integrated LAES project start date

from previous work,

16 months after and information

5.0 | Milestone 5: Integrated Battery/Super Capacitor oroject start date

>0 months after from the literature. Progress reports will
6.0 | Milestone 6: Hydrogen Energy Storage . be delivered

project start date according to the

23 months after reporting schedule.

7.0 | Milestone 7: Analysis of Results

project start date

21



PMP: Milestones

Milestone 1 will be reached upon completion of Task 2, which consists of three subtasks:
Development of the Reference Plant Model, Determination of Baseline Technical
Performance, and Determination of Baseline Economic Performance.

Baseline plant performance will be combined with actual grid and market plant data to determine

baseline plant economics. The plant baseline economic performance indicators will be compared to
the actual indicators from the energy market.

Milestone 2 will be reached upon the completion of Subtask 3.1, which includes
determination (simulation) of performance of the reference plant with integrated thermal
energy storage.

The results will be verified against information from the literature.

Milestone 3 will be reached after completion of Subtask 3.2 where economic
performance of the energy storage options will be determined by combining technical
performance indicators with actual grid and market price data to determine plant
economics under realistic conditions in the energy market.

The predicted economic indicators will be compared to the actual indicators from the energy

market.
22



PMP: Milestones

Milestones 4, 5 and 6 are related to the technical and economic evaluation of the
Battery-Supercapacitor, Integrated Liquid Air Energy Storage (LAES) also referred to as
Cryogenic Energy Storage (CES), and Hydrogen Energy Storage (H2ES) options.

Evaluation of the battery-supercapacitor option will be led by CES, who has a significant
experience in evaluation of this technology. The results will be compared to the previously

completed studies.

LAES is relatively novel technology and analysis of its technical performance will require close
collaboration between UNCC and Lehigh University. The results will be compared to the
iInformation from the literature.

The analysis of the Hydrogen energy storage (H2ES) option will be led by Lehigh University and
Air Products and Chemicals, Inc (APC). APCI is a world leader in hydrogen production and
storage and the project will rely on their experience in analysis of this energy storage option.

23



Deliverables

* Periodic and final reports will be submitted in accordance with the
~ederal Assistance Reporting Checklist.

* Project Management Plan (PMP) will be updated 30 days after
oroject award. Revisions to the PMP will be submitted as requested by
the NETL program manager.

* Technology Maturation Plan (TMP) will be updated within 90 days of
award. Revisions to the TMP will be submitted as requested by the
NETL program Manager.

24
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do not necessarily state or reflect those of the United States Government or any agency
thereof.
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Conclusions and Comments

The increased share of feed-in from variable and non-dispatchable renewable
energies results in complex challenges for the energy system.

In addition to other options such as grid and demand-side management, flexible
conventional power generation plays a key role for ensuring adequate system
stability.

Energy storage integrated with the plant (IES) is an option that will play an
Important role in improving the flexibility of fossil power plants.

» Flexible power plant operation comprises minimum load operation, short and efficient start-ups
and shut-downs, increased load ramp rates, and peak power when needed.

IES partially decouples the plant power output from the boller firing rate improving

plant dynamic response.

The energy storage options selected for analysis include: Thermal Energy
Storage, Liquid Air Energy Storage, Battery Storage in combination with Super-
capacitors, and Hydrogen Energy Storage.

26
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Dr. Nenad Sarunac

UNCC EPIC
9201 University City Blvd
Charlotte, NC 28223-0001
T|(704) 687-1089|M (610) 653-9119

Dr. Carlos Romero

Energy Research Center, Lehigh University
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T|(610) 758-4090
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