

John M. Rockey Technology Manager

Coal Power Generation Challenged by Changing Power Markets

Current Electricity Landscape

- Renewable energy will continue to increase in market share
- Changing market conditions require flexible
 power plants

DOE-FE Approach

- Ensure coal-fired generation is clean, efficient, and cost competitive
- Capitalize on the inherent stored energy and dispatchability of coal
- Develop solutions that are not one size fits all Based on regional market needs

Transformative Power Generation Program

NATIONAL ENERGY TECHNOLOGY LABORATORY

R&D Focus Areas

Program Budget History

Program Funding (\$M)				
FY 18 Enacted	FY 19 Enacted	FY 20 Enacted		
\$26	\$48.7	\$40.5		

Mid-Term Implement in 4-12 years

Coal FIRST: Mission, Need, and Goal

- Keep coal power generation in mix beyond 2050
- Capability for net negative carbon dioxide emissions is key
- Business case to enable widescale replication within markets

Technology Development Schedule: Coal FIRST

Technology Concepts and Pre-FEED Studies

- Flexible Ultra Supercritical (USC) Coal-Fired Power Plant
- Hybrid Natural Gas Turbine / USC Coal Boiler Power Plant
- Pressurized Fluidized Bed Combustor with Supercritical Steam Cycle Power Plant

- Indirect Supercritical Carbon Dioxide
 Power Plant System
- Direct-fired Supercritical Carbon Dioxide Power Plant System
- Gasification Based Poly-generation
 Power Plant System
- Coal-Fired Direct Injection Combustion Engine & Gas Turbine Compound Reheat Combined Cycle Power Plant System
- Modular Staged Pressurized Oxycombustion Power Plant System

Implementation Began FY19

Coal FIRST: Coal Plant of the Future

Title	Objective	Funding (DOE/Total)	Issued	Closed
RFP No. 89243319RFE000015 "Coal-Based Power Plants of the Future"	Develop the program's conceptual design with an option to conduct preliminary front- end engineering design (Pre-FEED) studies.	\$9.8M/ \$9.8M	Nov 12, 2018	Jan 25, 2019
FOA-2057 "Critical Components for Coal FIRST Power Plants of the Future"	Development of critical components that will support potential designs for coal-based power plants of the future.	\$37M/\$47M	Feb 7, 2020	Apr 13, 2020
FOA-0002180 "Design Development and FEED Studies for Coal FIRST Systems "	To make available up to ~\$81 million for cost- shared R&D projects focused on performing Front End Engineering Design (FEED) studies for the Coal FIRST plant with allowances for limited design development.	Up to \$81M/ \$101.25M	DRAFT: May 18, 2020 FINAL: July 17, 2020	Aug 26, 2020

Coal FIRST Critical Components R&D

Testing and Model-Based Optimization of Coal-Fired Primary Heater Design for Indirect Supercritical CO₂ Power Cycles Washington University in St. Louis

Development of Critical Components for the Modular Staged Pressurized Oxy-combustion Power Plant

High-Temperature Seals for Supercritical CO₂ Turbines

Media and Process Technology Inc.

Advanced Ceramic Membranes/Modules for Ultra-Efficient H₂ Production/CO₂ Capture for Coal-Based Poly-generation Plants

Zero Emission Syngas Combustor Test

Development of Coal Syngas Oxy-Combustion Turbine for Use in Advanced sCO₂ Power Cycles

Coal FIRST FEED FOA-2180 Selections

Accomplishments & Next Steps

Coal FIRST: Coal Plant of the Future

Accomplishments

- Stakeholder input (Request for Information)
- 13 Concept Studies performed
- Seven Pre-FEED Studies completed in April/May 2020
 Pre-FEED Study deliverables posted here: <u>https://netl.doe.gov/coal/tpg/coalfirst/concept-reports</u>
- FOA-0002057 Selected 7 R&D projects for components of promising systems of future coal plants

Announcement:

https://www.energy.gov/fe/articles/foa-2057-project-selections

 FOA-0002180 – Selected 4 projects for Design Development and FEED Studies
 Announcement: https://netl.doe.gov/node/10255

Next Steps

Award FEED studies
 Fall/Winter 2020

Improvements for Existing Plants

Near-Term

Implement in 2-10 years

Coal Fleet R&D – Challenges and Focus

Baseload coal plants being deployed as load-following units

Performance and equipment degradation accelerated

Assist plants with improving:

- Increased flexibility
- Improved reliability
- Optimized efficiency

Existing Plants Projects

Existing Plants Projects Plant Test Sites

Technologies in Development

- Advanced Sensors (incl. temperature, corrosion, wireless, real-time, combustible gases, ash deposition)
- Reduced Low-load Technology
- Online Coal Analyzer
- Advanced Ash Management
- Dynamic Plant Control Systems for Improved Transient Operation
- Coatings for Reliability and Efficiency
- Condition-based Monitoring Systems
- Energy Storage
- Dynamic Plant Models
- Online System Identification
- Energy Systems & Market Analysis

Improvements for Existing Plants

- Conducting field testing at over 21 power plants with 24 utilities
- Installed extended low-load boiler system
- Tested online coal tracker with combustion system performance prediction
- Tested wireless temperature and corrosion sensors
- Tested ultrasonic sensors for real-time temperature profiles
- ✓ Detected and diagnosed pre-mature equipment failure using machine learning
- Tested improved condenser coating technology

Transformative Power Generation

- **NE NATIONAL ENERGY** TECHNOLOGY LABORATORY

Advanced Combustion R&D

Long-Term Implement by 2030-2035

Advanced Combustion Technologies

Washington University in St. Louis

Application: Staged **Pressurized Oxy-combustion**

100 kW Prototype Staged Pressurized Oxy-combustor

Southwest Research Institute

Application: Flameless **Pressurized Oxy-combustion**

Traditional Combustor **Products: Particulate**

FPO Combustor Products: Near-zero carbon, neutral slag

NETL Research and Innovation Center

Application: Chemical Looping Combustion

NETL's High Temperature **Environmental Confocal** Scanning Laser Microscope

- Coal-fired plants must be more flexible, reliable, and efficient
- Program focuses on existing and new plants
- Lab and field testing of impactful technologies underway
- All projects have industry involvement

Stakeholder involvement essential for transition of technologies to industry

Questions?

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

https://netl.doe.gov/coal/tpg

CONTACTS:

John Rockey John.Rockey@netl.doe.gov

Raj Gaikwad Raj.Gaikwad@hq.doe.gov

Bhima Sastri Bhima.Sastri@hq.doe.gov

