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Demonstrate the proposed inorganic membrane-based DMC Production process at the pilot 8
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Background: Direct Synthesis of DMC: Advantages & Challenges Results: Nanofiltration Subsystem: Exceptional MeOH/DMC Separation
Carbon Molecular Sieve Membrane: CCS-3 -
} ) >98% Rejection of
I ! Pathway [1] ) 1. DMC from MeOH
' P Catalyst ’ ? ) Wlth
> ¢ 200°C, 300 psig CMS Nanofilter
Carbon dioxide Methanol Dimethyl carbonate Water 06 | — @ - CCS+#3: Flux (Feed-55wt%DMC/MeOH) “ 00
(CO,) (MeOH) (DMC) (H,0) = o ting Conditi .
= —-@— CCS+#3: Flux (Feed-33wt%DMC) e T
%a 0.5 120 to 200°C; 100 to 300psig 9
Advantages of Direct Synthesis of DMC X —e— CCS-#3: Flux (Feed-10wt%DMC) p
(®)
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Non-hazardous: Reactants are non-hazardous versus other synthetic pathways. [ E
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Solution: Membranes in DMC Synthesis and Recovery

Process Flow Diagram: Integrated MR and NF Subsystems

1. Eliminate
Azeotropic
Distillation
with NF3

Membrane Reactor: In-situ Dehydration

Membrane Separator: MeOH/DMC

Operation Mode: Nanofiltration
Azeotrope Break: Remove MeOH (and CO,)
from DMC.

4. Improved conversion with more
aggressive MR operating conditions;
higher performance membranes

Operation Mode: Pervaporation/Vapor
permeation.

Equilibrium Shift: Increase DMC vyield via in-situ
water removal

Increased Yield: Reduce downstream separation
and recycle requirements.

Reduced Energy and Cost: Eliminate multiple
column azeotrope distillation.
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Technology: Advanced Carbon Molecular Sieve (CMS) Membranes

Wide range of membranes technologies
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Milestone- Target/Goal Result MR Subsystem
Objective Significant conversion

Non-porous Tip and End Seals Stepping stone from the laboratory to
field/commercial scales.
enhancement and long term
performance stability.

Thin Active Layer Deposition
(CMS, Pd, Zeolites, ZIF, etc.) MI-01-Obj#1 MR MeOH Conversion Success: Y

Enhancement of >10% +580% versus equilibriut'h\ ‘/\
. 0 T ) P MI-01-Obj#2 Stable MR Membrane Success: "~
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NF Subsystem
MI-02-Obj#3a  NF DMC rejection >90% Success: el (B e A

DMC rejection >95 to >98% < pé??ogr:ﬁ;rr?ce
. : stability.
MI-02-Obj#3b NF flux decay <10% in long term  Qualified Success:
MPT 57-tube Bundle testing Initial flux decay at ~50%, then very stable during
(Carbon Molecular Sieve Membrane) ,» >400 to ~700 hours of testing.

MI-03-Obj#4 Develop MR mathematical model  Success:

In-house model available % Process Commercialization

Preliminary TEA shows
potential for low cost DMC

— . MI-03-Obj#5 Update process flow diagram. Success: production.
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production cost target <$0.35/1Ib. Demonstrated DMC production cost ~$0.27/1b

e— .
Re-designed the PFD.

MI-03-Obj#6 Refined TEA with DMC Success:



