Inorganic Membrane-based Reactive Separation and Reactant Recycle for

Direct Synthesis of Dimethyl Carbonate (DMC)

Media and Process Technology Inc.

PI: Dr. Richard J. Ciora, Jr. Media and Process Technology Inc. 1155 William Pitt Way, Pittsburgh, PA 15238 412-292-4057, rciora@mediaandprocess.com

<u>Project Overview:</u> Funding, Participants, and Objectives

Program: Phase II Small Business Innovation Research (SBIR)

Funding: Overall project budget: \$1,050,000 (including DCA funding).

Overall Project Performance Dates: March 19, 2020 - March 18, 2022 (24 months)

Project Participants:

- > Media and Process Technology... Membrane manufacturer/supplier and technology developer
- > TechOpp Consulting, Inc... Discretionary Commercialization Assistance provider (POC: Mary Ann S. Bonadeo)

Overall Phase II Project Objectives:

Demonstrate the proposed inorganic membrane-based DMC Production process at the pilot scale at the relevant operating conditions:

- Improved Dimethyl Carbonate (DMC) conversion in a membrane reactor configuration **(i)**
- Improved DMC product recovery in a downstream membrane nanofilter. (ii)

Results: Nanofiltration Subsystem: Exceptional MeOH/DMC Separation

<u>Background:</u> Direct Synthesis of DMC: Advantages & Challenges

Carbon Molecular Sieve Membrane: CCS-3

Advantages of Direct Synthesis of DMC

- **<u>Green Process:</u>** Produced from CO₂ and biomass derived methanol
- **Non-hazardous:** Reactants are non-hazardous versus other synthetic pathways.
- **<u>Safety:</u>** Considerably safer operating conditions than commercial processes.

Challenges of Direct Synthesis of DMC

- **Equilibrium limitation:** Conversions to DMC limited to under 2 to 5%
- **Methanol/DMC Azeotrope:** Multiple column azeotropic distillation required. 2.
- **<u>Energy intensive:</u>** Combination of these problems yields uncompetitive cost

Cumulative test duration [hours]

Solution: Membranes in DMC Synthesis and Recovery

with NF1 and NF2

<u>Technology:</u> Advanced Carbon Molecular Sieve (CMS) Membranes

Accomplishments: Demonstrated Proof of Concept

Milestone- Objective	Target/Goal	Result <u>MR Subsystem</u> Significant conversion
MI-01-Obj#1	MR MeOH Conversion Enhancement of >10%	Success: +580% versus equilibrium
MI-01-Obj#2	Stable MR Membrane Performance	Success: No change in 2,800 hours of testing. <u>NF Subsystem</u>
MI-02-Obj#3a	NF DMC rejection >90%	Success: DMC rejection >95 to >98%
MI-02-Obj#3b	NF flux decay <10% in long term testing	<i>Qualified Success:</i> Initial flux decay at ~50%, then very stable during >400 to ~700 hours of testing.
MI-03-Obj#4	Develop MR mathematical model	Success: In-house model available. Process Commercialization Preliminary TEA shows
MI-03-Obj#5	Update process flow diagram.	Success: Re-designed the PFD.
MI-03-Obj#6	Refined TEA with DMC production cost target <\$0.35/lb.	Success: Demonstrated DMC production cost ~\$0.27/lb