Project Overview: Funding, Participants, and Objectives

Program: Phase II Small Business Innovation Research (SBIR)

Funding: Overall project budget: $1,050,000 (including DCA funding)

Overall Project Performance Dates: March 18, 2020 - March 16, 2022 (24 months)

Project Participants:
- Media and Process Technology
- Teclaya Consulting

Overall Phase II Project Objectives:

1. **Eliminate** operation mode, **success:**
 - 200

2. **Advanced Carbon Molecular Sieve (CMS) Membranes**
 - 700
 - 10

3. **Azeotrope Break:** MeOH Conversion
 - MI-03-Obj4

4. **Membrane Reactor Subsystem:** Enhanced DMC Conversion in MR Configuration
 - MI-03-Obj5

5. **NF Subsystem:** Exceptional MeOH/DMC Separation
 - MI-03-Obj6

Results:

1. **Membrane Reactor Subsystem:** Enhanced DMC Conversion in MR Configuration
2. **NF Subsystem:** Exceptional MeOH/DMC Separation

Process Flow Diagram:

- **Integrated MR and NF Subsystems**
- **Membrane Reactor**
- **Membrane Separator:** MeOH/DMC
- **Operating Conditions**
- **Reaction Time**
- **DMC Concentration**

Accomplishments:

- **Demonstrated DMC production cost ~$0.27/lb**

- **High temperature (>500°C, 300 to 1,500 psig)**

- **High pressure (1,500 psig)**

- **Wide range of membranes technologies**

- **Multiple tube bundles**

- **High temperature (>500°C)**

- **Hard sealing**

- **Stable MR Membrane**

Technology: Advanced Carbon Molecular Sieve (CMS) Membranes

- **Package into Multiple Tube Bundle**

Background: Direct Synthesis of DMC: Advantages & Challenges

Advantages of Direct Synthesis of DMC

1. **Green Process:** Produced from CO₂ and biomass derived methanol
2. **New Technology:** Reactors are mimicked diatom structure yielding high selectivity
3. **Safety:** Considerably safer operating conditions than commercial processes.

Challenges of Direct Synthesis of DMC

1. **Extraneous limitation:** Conversion to DMC limited to under 2 to 5%
2. **Membrane Reactor:** Multiple membrane reactors required.
3. **Energy intensive:** Combination of these problems yields an economically unviable process.

Solution: Membranes in DMC Synthesis and Recovery

- **Membrane Reactor: In-situ Dehydration**
- **Membrane Separator: MeOH/DMC Separation**
- **Membrane Reactor Membrane Separator: Inorganic Non-Aggressive MR Technology**

Operating Conditions

- **120 to 200°C, 300 to 2,100 psig**
- **Nanofilter Performance**
- **Membrane Reactor Membrane Separator: Inorganic Non-Aggressive MR Technology**

Results: Membrane Reactor Subsystem: Enhanced DMC Conversion in MR Configuration

Process Flow Diagram:

- **Integrated MR and NF Subsystems**
- **Membrane Reactor**
- **Membrane Separator:** MeOH/DMC
- **Operating Conditions**
- **Reaction Time**
- **DMC Concentration**

Accomplishments:

- **Demonstrated DMC production cost ~$0.27/lb**

- **High temperature (>500°C, 300 to 1,500 psig)**

- **Hard sealing**

- **Stable MR Membrane**

Technology: Advanced Carbon Molecular Sieve (CMS) Membranes

- **Package into Multiple Tube Bundle**

Background: Direct Synthesis of DMC: Advantages & Challenges

Advantages of Direct Synthesis of DMC

1. **Green Process:** Produced from CO₂ and biomass derived methanol
2. **New Technology:** Reactors are mimicked diatom structure yielding high selectivity
3. **Safety:** Considerably safer operating conditions than commercial processes.

Challenges of Direct Synthesis of DMC

1. **Extraneous limitation:** Conversion to DMC limited to under 2 to 5%
2. **Membrane Reactor:** Multiple membrane reactors required.
3. **Energy intensive:** Combination of these problems yields an economically unviable process.

Solution: Membranes in DMC Synthesis and Recovery

- **Membrane Reactor: In-situ Dehydration**
- **Membrane Separator: MeOH/DMC Separation**
- **Membrane Reactor Membrane Separator: Inorganic Non-Aggressive MR Technology**

Operating Conditions

- **120 to 200°C, 300 to 2,100 psig**
- **Nanofilter Performance**
- **Membrane Reactor Membrane Separator: Inorganic Non-Aggressive MR Technology**

Results: Membrane Reactor Subsystem: Enhanced DMC Conversion in MR Configuration

Process Flow Diagram:

- **Integrated MR and NF Subsystems**
- **Membrane Reactor**
- **Membrane Separator:** MeOH/DMC
- **Operating Conditions**
- **Reaction Time**
- **DMC Concentration**

Accomplishments:

- **Demonstrated DMC production cost ~$0.27/lb**

- **High temperature (>500°C, 300 to 1,500 psig)**

- **Hard sealing**

- **Stable MR Membrane**

Technology: Advanced Carbon Molecular Sieve (CMS) Membranes

- **Package into Multiple Tube Bundle**

Background: Direct Synthesis of DMC: Advantages & Challenges

Advantages of Direct Synthesis of DMC

1. **Green Process:** Produced from CO₂ and biomass derived methanol
2. **New Technology:** Reactors are mimicked diatom structure yielding high selectivity
3. **Safety:** Considerably safer operating conditions than commercial processes.

Challenges of Direct Synthesis of DMC

1. **Extraneous limitation:** Conversion to DMC limited to under 2 to 5%
2. **Membrane Reactor:** Multiple membrane reactors required.
3. **Energy intensive:** Combination of these problems yields an economically unviable process.

Solution: Membranes in DMC Synthesis and Recovery

- **Membrane Reactor: In-situ Dehydration**
- **Membrane Separator: MeOH/DMC Separation**
- **Membrane Reactor Membrane Separator: Inorganic Non-Aggressive MR Technology**

Operating Conditions

- **120 to 200°C, 300 to 2,100 psig**
- **Nanofilter Performance**
- **Membrane Reactor Membrane Separator: Inorganic Non-Aggressive MR Technology**

Results: Membrane Reactor Subsystem: Enhanced DMC Conversion in MR Configuration

Process Flow Diagram:

- **Integrated MR and NF Subsystems**
- **Membrane Reactor**
- **Membrane Separator:** MeOH/DMC
- **Operating Conditions**
- **Reaction Time**
- **DMC Concentration**

Accomplishments:

- **Demonstrated DMC production cost ~$0.27/lb**

- **High temperature (>500°C, 300 to 1,500 psig)**

- **Hard sealing**

- **Stable MR Membrane**

Technology: Advanced Carbon Molecular Sieve (CMS) Membranes

- **Package into Multiple Tube Bundle**