Sustainable Conversion of Carbon Dioxide and Shale Gas to Green Acetic Acid via a Thermochemical Cyclic Redox Scheme
Sheraghani Iftikhar, Yunfei Gao, Qiongqiong Jiang, Xijun Wang, Luke Neal (Co-PI) and Fanxing Li (PI)
Department of Chemical & Biomolecular Engineering, North Carolina State University

Project Objective
To develop a process for sustainable and cost-effective production of acetic acid, a critical building block for the plastic industry, from carbon dioxide and domestic shale gas resources.

Proposed Strategy
To perform CO₂-splitting and methane partial oxidation (POx) in a synergistic two-step, thermochemical redox scheme via a hybrid redox process (HRP).

Potential Benefits
(i) Separate streams of methanol ready syngas and CO
(ii) "low temperature" redox catalyst system for waste heat utilization
(iii) Ability to produce other valuable chemicals, e.g., mono-ethylene glycol and acetic anhydride.

Key to Success: Effective redox catalyst particles

HRP Material Development

La-substituted Ceria
Easier Oxygen Removal and Migration

PGM-free Redox Catalyst

Redox Catalyst Optimization
DFT Guided Redox Materials Optimization

Techno-Economic Analysis

Comparison of Key Economic Indicators
41% capital savings with HRP.
32% reduction in cost per tonne of acetic acid vs. reference cost.