Design of Transition-Metal/Zeolite Catalysts for Direct Conversion of Coal-Derived Carbon Dioxide to Aromatics (FE0031719)

ar Iman Nezam, Gabriel S. Gusmão, Wei Zhou, Matthew J. Realff, Andrew J. Medford, Christopher W. Jones Georgia Institute of Technology, Atlanta, GA

Current Production Technology Catalytic reforming of naphtha

Catalyst Precious metals supported by high surface area materials with acidity

Carbon Dioxide (CO₂)

- Domestic CO₂ emission from coal combustion: 1500 million metric tons in 2017
- Could fully support the BTX global market

CO_2 to BTX ($CO_2 \rightarrow$ Intermediate \rightarrow BTX)

Two steps in a single reactor (CO₂ from flue gas, some H₂ source)

CO₂ to Intermediates (MOH/DME): **Metal Oxides** (ZnZrO_x) Oligomerization + Aromatization: MFI (H-ZSM-5)

Process Setup:

Georgia

Experimental Progress

Computational Catalysis Progress

- Comprehensive DFT-based mean-field microkinetic catalytic model on Cu(111) encompassing 28 adsorbate- and 13 gas-species in 42 elementary reactions.
- Forward and reverse water-gas shift from [1] Grabow, L.C. and M. Mavrikakis, ACS Catal. 2011. Oxygenates formation: ethanol, formic acid, formaldehyde from [1], ethanol, acetic acid and acetaldehyde from Schumann, J. et al., ACS Catal. 2018. Hydrocarbons formation: methane [1] and ethane from Martin Hangaard, H. et al., J. Catal. 2019. Oxygen dissociation from Falsig, H., et al., Top. Catal. 2014.

Catalyst Temperature Dependence:

Catalyst Acid Density Dependence:

- \rightarrow Not following the typical ASF distribution
- Aromatics are mainly C9 perhaps due to the small ZSM5 particle size (excess external surface area)
- Aromatics selectivity is maximized at 320 °C
- Olefin hydrogenation to paraffins becomes dominant at high temperatures
- RWGS reaction is endothermic \rightarrow Increasing CO selectivity with temperature

- Very low acid density is desired. Max aromatics selectivity at Si/Al=300
- CO selectivity is minimum at Si/Al ratio of 300-600
 - High acid density promotes the **RWGS** reaction

 $CO_{2(g)}$ HCOOH* HCOO* H-COO* Н-НСООН CO₂* H-OOO-H* ဂ် CO_{2(g)} . CH₃OH* CH₃OH_(g) -CH₃OH ³OH

Current Status

- Maximum aromatics selectivity is obtained at T=320 °C, WHSV=7200 mL/g cat./h, Si/Al=300: 39.7% (STY= 1.04 mmol CO₂/g cat/h)
- DFT-based rates have been calculated for the main intermediate species for the CO₂ hydrogenation on Cu(111). DFT-energies have been extended to the 211 facet of Ag, Au, Pd, Pt, Rh and Cu.

Next steps

- Studying the effect of diffusion path length on catalytic activity.
- DFT-based identification of target alloy catalysts for methanol production.

Acknowledgments

The authors acknowledge the U.S. Department of Energy for financial

transfer rate for olefins synthesis

support through grant DE-FE0026433.

