

A Scalable Process for Upcycling Carbon Dioxide (CO₂) and Coal Combustion Residues into Construction Products

Iman Mehdipour, Gabriel Falzone, Gaurav Sant

UCLA Samueli School of Engineering, University of California, Los Angeles (UCLA), Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.

Federal Project Manager: Andrew Jones Agreement Number: FE0031718 https://netl.doe.gov/projectnformation?p=FE0031718

Motivation and project objectives

The problem at hand – CO₂ emissions from cement/concrete: Concrete, a mixture of portland cement, aggregate, and water is indispensable in construction (> 30 billion tons produced / year). But nearly 1 ton of CO_2 is emitted for each ton of portland cement produced (> 4 billion tons / year). As the vast concrete market provides an impactful sink for CO_2 emissions, the CO_2 mineralization process can enable scalable and cost-effective decarbonization in construction.

1. Upcycle industrial wastes and CO₂ - Produce low-carbon CO₂Concrete products from coal combustion residues, flue gas CO₂, and low-grade waste heat

- 2. Design CO₂ mineralization system Develop process models to inform scale-up design of a "bolt-on" system at coal-fired power plants
- 3. Field test system using real flue gas Fabricate and field test CO₂ mineralization system to capture around 100 kg of CO₂ per day from coal-fired flue gas
- 4. Product compliance Ensure CO₂Concrete product compliance with industry standards; demonstrate potential utilization in construction applications

Process flow for developing low-carbon concrete by CO₂ mineralization

• Portlandite $(Ca(OH)_2)$ is a highly efficient reactant for CO_2 mineralization $(CO_2 \text{ uptake } 0.59 \text{ g/g})$ that is also abundant and near cost parity to cement

- Carbonation occurs rapidly at ambient temperature and pressure without carbon capture step, pressurization or gas clean-up (insensitive to SOx and NOx)
- "Green bodies" are shape-stable components that are exposed to flue gas in a carbonation reactor
- Process is flexible: Simple integration at any CO₂ emissions source ("stack-tap") which enables co-location and low-cost processing

Carbonation kinetics, system performance, and product compliance

Portlandite carbonation at dilute CO₂ concentrations:

- Reaction kinetics are largely independent of CO₂ concentration for flue gas concentrations (≥ 2 %)
- Activation energy is rather low: initial surface reaction (3 kJ/mol) and (22 kJ/mol) when transport barriers may form; confirming that no pressurization, CO_2 enrichment,

Effects of microstructure and pore saturation on carbonation:

- CO₂ diffusion through pore structure limits reaction rates which scales with scale with body's moisture diffusivity
- Liquid water saturation (S_w) in porous cementing microstructures influences carbonation kinetics; S_w $\approx 0.1 - 0.2$: critical level for CO₂

Computational fluid dynamics (CFD) modeling for reactor design:

- Performed CFD to inform design of flue gas handling and distribution equipment within the CO_2 mineralization reactor
- Spatial distribution of CO₂ uptake is significantly affected by gas flow configuration. Greater gas velocity and homogeneity offer higher CO_2

Pilot scale system demonstration at Integrated Test Center, Wyoming:

12

Period of Flue Gas Exposure (h)

16

20

— Inlet

— Outlet

– Uptake

150

50

- Produced around ~200 tonnes of CO₂Concrete blocks over 12 demonstration runs that featured nearly 4 tonnes of CO₂ uptake
- System performance fulfilled all design specifications: (1) achieved in excess of $75\% CO_2$ utilization efficiency and (2) utilized greater

Performance of CO₂Concrete products:

5

20

- CO₂Concrete products complied with industry standard specifications: strength > 13.8 MPa and water absorption < 208 kg/m³
- Preliminary lifecycle analysis (LCA) indicated ~ 65 % CO_2 emissions reduction relative to conventional CMUs

• Falzone, G.; et al. New insights into the mechanisms of carbon dioxide mineralization by portlandite. AIChE Journal. Accepted for publication.

• Mehdipour, I.; et al. How Microstructure and Pore Moisture Affect Strength Gain in Portlandite-Enriched Composites That Mineralize CO₂. ACS Sustainable Chem. Eng. 2019, 7 (15), 13053–13061.