Synthetic Calcium Carbonate Production by Carbon Dioxide
Mineralization of Industrial Waste Brines

Raghavendra Ragipani1, Dale Prentice2, Steven Bustillos3, Abdulaziz Alturki3, Erika Callagon La Plante2, Gaurav Sant2, Dante Simonetti3, Bu Wang1
1Civil and Environmental Engineering, University of Wisconsin-Madison; 2Civil and Environmental Engineering, UCLA; 3Chemical and Biomolecular Engineering, UCLA.

#equal contribution by authors

Background
Carbon dioxide mineralization converts CO2 into stable carbonates. Fine carbonates, such as precipitated calcium carbonate (PCC), are high-value commercial additives to a wide range of consumer and industrial products.

\[
Ca^{2+}_{\text{aq}} + CO_2(g) + H_2O(l) \rightarrow CaCO_3(s) + 2H^+_{\text{aq}}
\]

CO2 mineralization at atmospheric conditions is thermodynamically favorable but require,
a) Ca2+ source, b) Alkalinity

We are looking at two approaches to generate alkalinity and Ca concentration.

Problem statement
CO2 mineralization is intrinsically carbon negative and has potential to sequester CO2 at gigaton scale. However, to maximize CO2 capture and commercial viability, we need to develop mineralization processes with minimum life-cycle CO2 footprint and energy input.

Approach
In this project, we develop two CO2 mineralization methods.

Process A: Coal ash carbonation
Ca and alkalinity source: coal ashes non-compliant with ASTM C618

Process B: Produced water carbonation
Ca source: produced water from oil and gas operations; Alkalinity source: ion-exchange

Process A: Coal ash carbonation
Effect of Liquid-to-solid ratio (L/S) in de-ionized water for FA

Neutralization characteristics of FA in mineral acid

Solubility control on BA leaching:

Solubility control on FA leaching:

Process B: Produced water carbonation
IEX H+ exchange capacities & competitive ion exchange

Break-through curves for H+ exchange & regeneration characteristics

Commercial Ion-exchange resins tested:
- Weak Acidic Resins
 - Lewatit TP 207 (R1)
 - Lewatit TP 260 (R2)
- Zeolites
 - Zeolite 4A (Z1)
 - Zeolite 13X (Z2)

Acknowledgment: *This material is based upon work supported by the Department of Energy under Award Number DE-FEE0031705.* Disclaimer: *This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of its employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any Information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.*