NANOTECHNOLOGY CONVERTS CO, FROM POWER PLANTS FLUE GAS TO VALUABLE PRODUCTS (US DOE DE-FE0031707) **(SODIUM BICARBONATE)**

Rui Wang^a, Bingyun Li^b and Badie Morsi^a

256

NO

0.025

2.55E-04

Packing specific surface area, m⁻¹

To develop a continuous process using Amino Acids (AA) for CO, capture from a typical flue gas of post-	
combustion applications to obtain a high-value product (sodium bicarbonate nanoparticles). Glv will	
be used in the process.	

Fig. 2 shows a schematic of the overall process.

^a Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA ^b Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA

8. Y Lu, et al. "Optimum design of reverse osmosis system under different feed concentration and product specification." J Membr. Sci. 287.2, 219-29, 2007. 9. Dow Water & Process Solution. "Filmtec[™] Reverse Osmosis Membranes." Technical Manual, Form 609-00071, 1-180, 2010.

10. Available at https://www.lenntech.com/Data-sheets/Dow-UF-SFD-2660-L.pdf.

e osmosis unit (ROU) setup [9]		
0.2	0.4	0.6
Number vessel x Number of		
nembrane	es in series	in a vessel
2 x 6	5 x 6	7 x 6
1 x 6	2 x 6	3 x 6
1 x 6	1 x 6	2 x 6
24	48	72
	ſ	
		$-0.2 \text{ m}^{3/\text{s}}$

	-0.4 m^{3} -0.6 m^{3}	/s /s

10	15	20	25
Column H	leight, m		
CO ₂ mole	fractio	n profile	
e UFU me	mbran	e (SFP-2	6 <mark>60)</mark> [10

e, m²	33
	1.3 – 4.0
n	1860
ne, mm	165
micron	0.03
ne pressure, bar	2.1
	2 - 11

Table 8. CO₂ material balance

6.156E-02	1.231E-01	1.847E-01
3.439E-04	5.162E-04	3.446E-04
2.727E-03	5.553E-03	8.363E-03
5.799E-02	1.170E-01	1.759E-01
3.824E-03	2.299E-02	1.117E-02