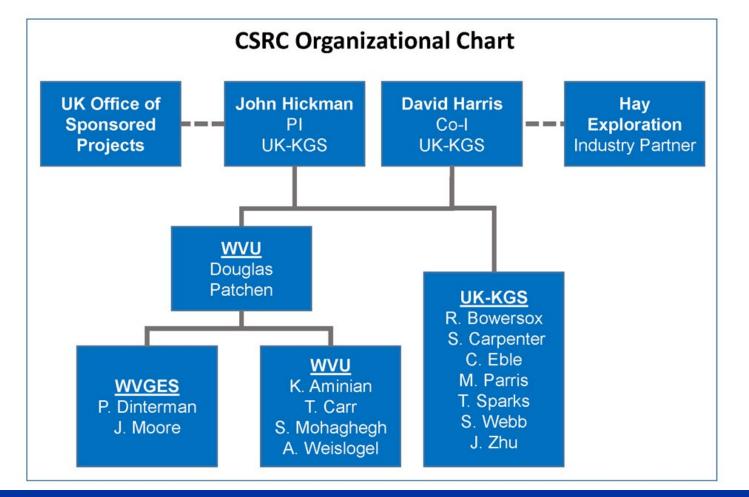
Conasauga Shale Research Consortium

Project Kick-Off WebEx Meeting December 18, 2019 1:30-2:30pm ET

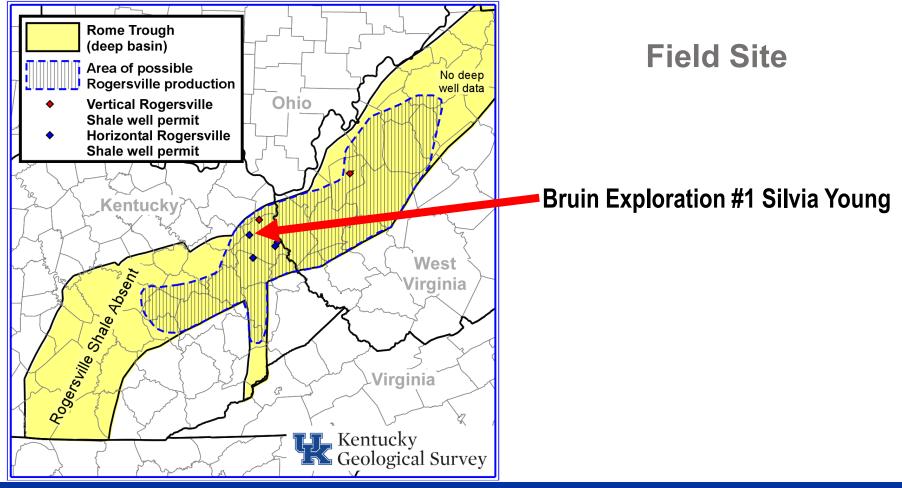
Outline

- Project Objective
- Organizational structure
- Field Site and Donated Data
- Summary of Key Tasks
- Gantt Chart
- Major Milestones
- Discussion of first BP
- Machine Learning and Artificial Intelligence
- Key Project Risks and planned strategies for mitigation
- Project Budget

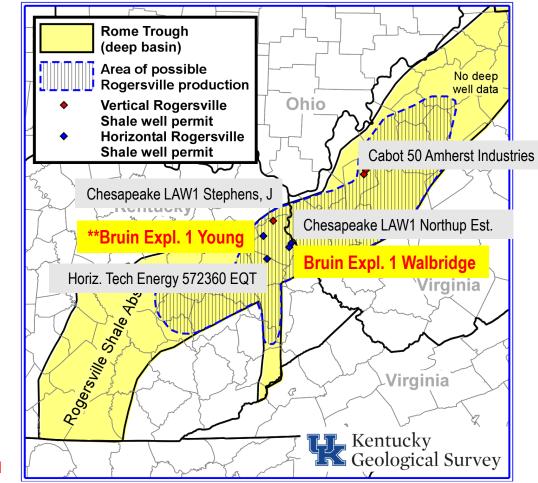


Project Objective

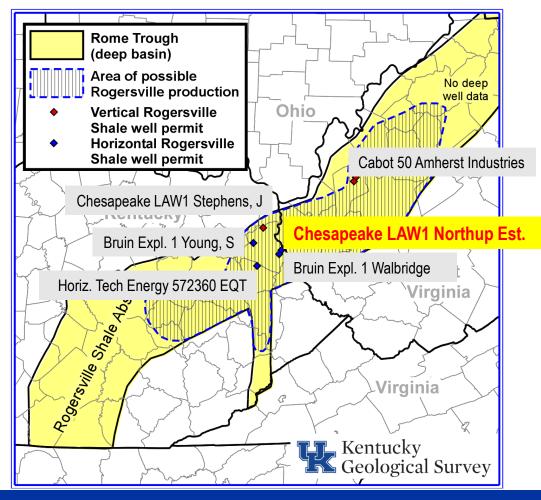
The overall objective of the project is to establish a field laboratory and utilize a horizontal well of opportunity to conduct a scientific study designed to advance the understanding of the petrophysical and geomechanical properties of the Rogersville Shale. Understanding these properties will improve well placement and completion design, ultimately leading to commercial production and the acceleration of play development. The data generated and compiled in this project will then be integrated into a Rogersville Shale Development Strategy Plan that will enable oil and gas industry to accelerate the development of this emerging resource.



Field Site and Donated Data



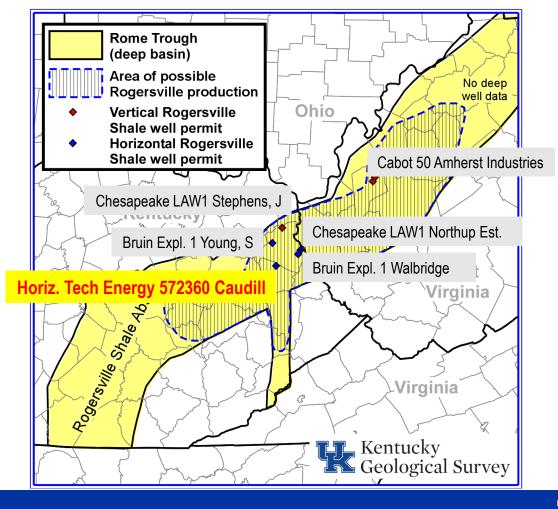
** Location of proposed CSRC Research Well lateral


Industry Data Donations to CSRC

Cimarex Energy is granting access to existing confidential data:

- Bruin Exploration No. 1 Sylvia Young well, Lawrence County, Ky. (project field laboratory site): proprietary data including digital log data, DFIT and completion data, mechanical rock properties data, sidewall core analyses, thin sections, XRD data, SEM images, organic carbon analyses, and oil/gas geochemistry.
- Bruin Exploration No. 1 Walbridge well, Lawrence County, Ky.: proprietary data including digital log data, DFIT and completion data, mechanical rock properties data, sidewall core analyses, thin sections, XRD data, SEM images, organic carbon analyses, and oil/gas geochemistry.
- Rogersville Shale related analytical data from older non-Cimarex-operated wells in Kentucky and West Virginia.

Industry Data Donations to CSRC

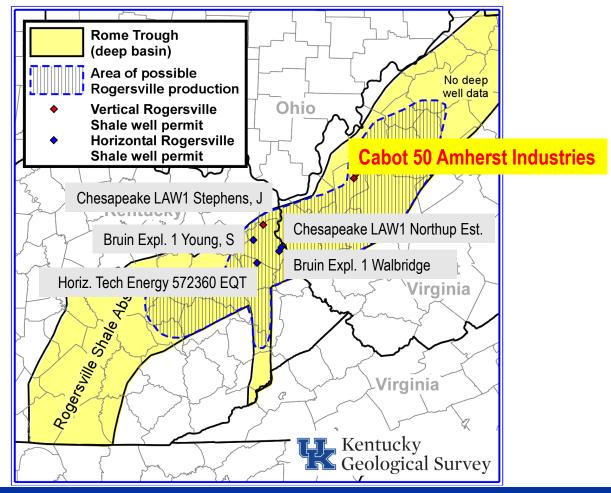

Chesapeake Energy is granting access to data from Chesapeake #15-S-84-Law Northup, Lawrence County, Ky.:

- a. Wellbore Schematic
- b. Daily Well Reports
- c. Wireline Logs
 - Triple Combo, Spectral GR, OMRI, Acoustic Image, Sonic, Caliper
- d. Mud Logs

- e. Formation Tops
- f. Core Photos, Thin Section Photos
- g. Sidewall Core Photos

- h. Geochemistry Extracts
 - GC Plots, Biomarkers
- i. Completion Data
 - Perforated Intervals/Depths (Maryville, Rutledge, Rome)
 - DFIT Data
 - Frac Data
- j. Flowback Data
- k. Mud Gas Evaluation
 - Mass Spec GC
 - Gas Isotope Analysis

Industry Data Donations to CSRC


EQT is granting access to confidential data from Horizontal Technology Energy 2. Rotary sidewall core analyses: Co., LLC #592360 Winston Caudill well in Johnson County, KY:

- 1. Full diameter core analyses:
 - a. XRD

- b. XRF (foot by foot)
- c. Shale rock analysis (PHIT, Sw, Sg, So, Perm)
- d. Rock Eval (TOC, S1, S2, HI, pyrograms)
- e. Core spectral GR
- f. PEF from core CT scan
- g. Chlorite work for fluid sensitivity

- a. XRD
- b. Shale rock analysis (PHIT, Sw, Sg, So, Perm)
- c. Rock Eval (TOC, S1, S2, HI, pyrograms)
- d. Adsorption isotherms
- 3. Geophysical well logs:
- a. Mass spec in vertical and both sidetracks
- b. Triple combo with spectral GR (pilot well)
- c. Multi-arm caliper (pilot well)
- d. Dipole sonic (pilot well)

Industry Data Donations to CSRC

Cabot Oil & Gas is granting access to confidential data from Cabot #50 Amherst Industries, Putnam County, WV:

- a. Wellbore schematic
- b. Full Suite of wireline logs
- c. Mud logs
- d. Detailed production logs
- e. Vitrinite Reflectance thermal maturity data
- f. Total Organic Carbon data
- g. XRF of well cuttings
- h. XRD of well cuttings
- i. Organic geochemistry data of well cuttings

Summary of Key Tasks

Pre-drilling Operations (BP-1)

- Compile itemized inventory of currently available Conasauga Group samples and data
- Produce "postmortem" analysis of the 6 existing Rogersville Shale wells in the Rome Trough
- Begin ML analysis of previous UOG completion results
- Begin regional subsurface mapping of Conasauga Group stratigraphy using well, potential field, and reflection seismic data
- Begin monitoring natural background seismicity in the region of potential Rogersville Shale Play development

Post-drilling, Pre-stimulation Operations (BP-2)

- Continue ML (T4.2), regional mapping (T5), and background seismicity (T6.5) tasks
- Collect well cuttings and formation fluids from new lateral for lab analysis
- Record and analyze full suite of geophysical logs in new well lateral
- Perform pre-stimulation hydrogeology site assessment at wellsite
- Perform lab analyses on new and legacy samples: TOC, XRD, XRF, %R_o, Sm-Nd clay provenance, SEM and Raman spectroscopy, pyrolysis and source rock extract geochemistry, geomechanical testing of select core samples
- Model optimal completion plans and review with operator

Post-stimulation Operations (BP-3, BP-4)

- Complete background seismicity analysis
- Monitor stimulation and initial production with local network of microseismic nodes
- Monitor stage-specific flow performance with downhole DAS
- Analyze and integrate the various lab results from BP-2
- Perform geochemical analysis of produced fluids and gasses
- Produce detailed 3D maps of reservoir facies and organic content
- Perform supporting infrastructure analysis of Play region
- Integrate all results into cohesive interpretive report

see blue.

Create Rogersville Development Strategy Plan for future exploration

CSRC Project Timeline

Gantt Chart, Tasks 1-6 (pre-drilling)

Year	20	19			2020)				2021			2022			2023		23.	
Task	Title		١	/ear	1			Y	'ear	2			Yea	ar 3			Year		
	Conasauga Shale Research Consortium	Q1	Q2		Q3	Q4	Q1	Q2		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q1 Q2 Q3		Q4
	Budget Periods		1			2	2					3	3				4		
Task 1	Project Management and Planning								ed										
Task 2	Workforce Readiness for Technology Deployment			_					at										
Task 3	Technology Transfer			led					Inc										
3.1	Project Website and Data Portal			J ril					tim										
3.2	Data and Sample Management								S										
3.3	Present Results at Public Meetings			tera					era										
3.4	Compile Inventory of Rogersville Samples and data			at					at										
Task 4	Engineering analysis of previous strategies			Ч Ч					ch L										
4.1	Full "postmortem analysis" of past Rogersville well results			arc					arc										
4.2	Machine learning analysis of previous completions			Se					sea										
Task 5	Regional mapping of Conasauga Group units			Re					Re										
5.1	Seismic, potential fields, and well-tops interpretation			Ľ,					2,										
5.2	Detailed subsurface formation and fault mapping			# 0					# 0										
Task 6	Drilling of Rogersville research lateral			ğ					00										
6.1	Collect well cuttings for analysis			ÓZ					NO										
6.2	Analysis of brines and gasses encountered while drilling			0					0/0										
6.3	Record full suite of geophysical logs of new lateral			U					00										
6.4	Site assessment analysis surrounding research lateral																		
6.5	Background seismicity characterization								σ										

Gantt Chart, Tasks 7-8 (post-drilling)

Year	20	19			2020)				2021	L			20	22			202	з.
Task	Title		γ	'ear	1			١	⁄ear	2			Yea	nr 3			Yea	Year 4	
	Conasauga Shale Research Consortium	Q1	Q2		Q3	Q4	Q1	Q2		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Budget Periods		1			2	2					3	3				4		
Task 7	Reservoir and source rock characterization								ate										
7.1	TOC analysis of available geological samples			Drilled					mula										
7.2	X-ray Diffraction (XRD) lab analysis of sample mineralogy			I Dri					Stir										
7.3	X-ray Fluorescence (XRF) analysis			eral					ral										
7.4	Portable XRF of available whole and rotary-sidewall cores			Latera					ate										
7.5	Bitumen reflectance microscopic analysis			arch					Р Р										
7.6	Sm-Nd Isotopic composition for provenance analysis			Se l					arc										
7.7	Thin-section creation and optical microscopy analysis			, Re					ese										
7.8	SEM and Raman spectroscopy			#1					R,										
7.9	Programed pyrolysis and source rock extract geochemistry			0 9) #2										
7.10	Detailed log analysis			N					0 G										
7.11	Geomechanical testing of select reservoir cores			G0/					0 N										
Task 8	Well completion design and monitoring			0					0										
8.1	Model optimal completion plans and review with operator								G										
8.2	Microseismic monitoring of well stimulation																		

Gantt Chart, Tasks 9-13 (post-stimulation)

Year	20	19			2020)				2021	L			20	22			202	23.
Task	Title		١	/ear	1			١	'ear	2			Yea	ır 3			Yea	Year 4	
	Conasauga Shale Research Consortium	Q1	Q2		Q3	Q4	Q1	Q2		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Budget Periods		1			2	2					3				4			
Task 9	Detailed reservoir quality mapping								ed										
9.1	3D facies/lithology mapping			σ					lat										
9.2	3D Organic content mapping			lle					nm										
9.3	Basin modeling for regional HC thermal maturation mapping			Dri					Stii										
Task 10	Geochemical analysis of produced fluids			La I					<u>n</u>										
10.1	Oil chemistry and biomarker analysis			ate					ate										
10.2	Molecular and isotopic chemistry of natural gases								h Li										
10.3	Noble gas characterization			arch					arcl										
Task 11	Post-completion petroleum engineering analysis			se					Se										
11.1	Down-hole fiber optics production data acquisition			Re					Re										
11.2	Full review of results from Young well lateral testing			#1,					#2,										
Task 12	Supporting infrastructure analysis			0 U					ß										
12.1	Pipelines, proximity and available capacities			6					ð										
12.2	Road network density for access to potential drilling locations			Z					Z										
Task 13	Project completion and synthesis of results			0 0 0					0 0										
13.1	Development Strategy Plan																		
13.2	Final Project Report and public release of research findings																		

Major Milestones

Task/ Subtask	Milestone Title & Description	Planned Completion Date	Verification method
3	Sample/data inventory complete – Website and data portal operational, preexisting samples cataloged	Jul 15, 2020	Website and data portal operational, preexisting samples cataloged
4.1	"Postmortem analysis" complete – Formal analysis of past Rogersville well results	May 15, 2020	Report on formal analysis of past Rogersville well results completed.
6	Authorization for Expenditure	May 31, 2020	AFE for drilling research lateral submitted to DOE
5	Regional Mapping Complete	Feb 15, 2021	Task 5 complete, detailed subsurface maps of Conasauga units and related faults in the Rome Trough completed
6.1, 6.2, 6.3	Lateral Drilled – Well drilled, well samples collected, logged	Feb 15, 2021	Lateral drilled as planned, logged and sampled successfully.
7	Reservoir characterization - Lab results completed and analyzed	Feb 15, 2022	Lab results from geological samples completed and analyzed
8	Microseismic monitoring array deployed	Mar 1, 2021	Seismic nodal array deployed around well location, prior to completion
8	Lateral Completed – Well completed and stimulated, initial flow testing begun	Feb 15, 2022	Well completed and stimulated, initial flow testing begun.
9	3D Reservoir maps complete	Apr 15, 2023	3D reservoir mapping complete
11	PE analysis complete	Apr 15, 2023	Down-hole fiber optic production data acquisition and results from Young well lateral testing complete
12	Infrastructure Challenges	Apr 15, 2023	Draft summary of findings on infrastructure complete.
13	Project Complete	Nov 15, 2023	Tasks 1 through 13 complete. Final Report submitted to DOE-NETL.

CSRC Budget Period 1

December 2019 through May 2020

During BP-1, the CSRC will perform work on Tasks 1, 3, 4, 5, and 6.

Task 1 - Project management

• In addition to traditional project management duties (meet all technical, schedule and budget objectives), KGS will continue to work with Hay Exploration to secure drilling funds for the proposed research lateral.

Task 3 - Technology transfer

- T3.4 Compile inventory of Rogersville samples and data
 - KGS and WVGES staff will compile an inventory of all available geological samples and publicly available geological data from the Rogersville Shale. These data will be posted on the RFL website and will be updated when and if new samples and data become available during the term of this project. Digital data will be made available for download from the RFL digital library.

Task 4 - Engineering analysis of previous strategies

- T4.1 Full "postmortem analysis" of past Rogersville well results
 - KGS will conduct a detailed analysis (using both public and proprietary data) of the drilling and testing results for preexisting wells drilled to test the UOG potential of the Rogersville Shale. The analysis will address both successful and unsuccessful techniques that were used in order to start building the Development Strategy Plan.
- T4.2 Machine learning analysis of previous completions
 - WVU will use Shale Analytics to assist in the design of completion practices for the Rogersville Shale. This data-driven technique includes artificial intelligence (AI), machine learning (ML), and data mining to increase the production efficiency of shale plays. WVU will utilize proprietary data sets that include production history, well log, completion, and well stimulation data (fluid and proppant type and amount, injection pressure and rate, and proppant concentration) to guide the model and determine well performance and to optimize the well stimulation process.

Task 5 – Regional mapping of Conasauga units

- T5.1 Seismic, potential fields, and well-tops interpretation
 - KGS and WVGES will conduct detailed subsurface mapping of the Rogersville Shale using well, seismic, and potential fields data. CSRC will use all available well data (geophysical well logs, lithologic strip logs, mud logs, etc.), approximately 1,200 miles of 2-D seismic reflection profiles (84 new miles of data will be purchased as part of this project), and regional potential fields datasets (Bouguer gravity, isostatic gravity, and aeromagnetic surveys) to produce detailed structure and isopach maps of the Rogersville.
- T5.2 Detailed subsurface formation and fault mapping
 - Using the information and data from Task 5.1, KGS and WVGES will produce detailed maps (both structure and thickness) of the Rogersville Shale. These maps will define the boundaries of the Rogersville Shale "geobody" in the subsurface, within which detailed 3D facies and lithology volumes will be interpreted in Task 9 (BP-3).

Task 6 - Drilling of Rogersville research lateral

In advance of the drilling and completion operations, the CSRC will document the natural seismicity of the potential Rogersville Play region, in order to distinguish any induced seismic events

- T6.5 Background seismicity characterization
 - KGS will deploy and monitor eight seismic stations to improve the characterization of natural micro-earthquake activity in the Rogersville Shale play area. The seismic monitoring equipment will include state-of-the-art broadband seismometers and highresolution data loggers (along with station power and telemetry components). New and archived network recordings will be processed with sophisticated detection algorithms including machine-learning, extended short-time-average to long-timeaverage (STA/LTA), and matched-filter detectors, to create a high-resolution earthquake catalog.

Al and ML: Shale Analytics

- **Shale Analytics** is the collection of state-of-the-art **Artificial Intelligence** and **Machine Learning** techniques that attempts to increase the production efficiency of shale wells.
- **Shale Analytics** uses "hard data" (field measurements) from drilling, completion, stimulation, and production:
 - Well trajectory, lateral length, TVD, MD, well logs, completion design (stage length, number of clusters per stage, number of perforations per cluster), hydraulic fracturing implementation (fluid and proppant type and amount, injection pressure and rate, as well as proppant concentration), and operational constraints (well-head pressure and choke setting).
- Traditional approaches to modeling fluid flow in shale use "soft data":
 - Frack length, frack width, frack height, frack conductivity, and in some cases Stimulated Reservoir Volume (SRV)

Al and ML: Transfer Learning

- Machine Learning requires considerable amount of data for the open computer algorithms to learn.
- **Transfer Learning** is a Machine Learning related technology with the objective of taking advantage of the knowledge gained from a series of available data in order to solve a reasonably similar problem that does not include the required data.
- The CSRC will transfer the learned knowledge from a series of well-established shale plays into a Rogersville Shale model, in order to assist completion design and decision making in this new shale formation where enough data is not yet available.

Al and ML: Predictive Analytics

- The CSRC will use the developed knowledge in order to make the right decisions for designing optimum completions in Conasauga shale.
 - o Collection and Preparation of all the Data from Multiple Assets,
 - o Building a Comprehensive Shale Analytics Data set (CSAD),
 - $\,\circ\,$ Building the Comprehensive Shale Analytics Model (CSAM), and
 - Using CSAM to Design Optimum Completion for Conasauga Shale.

Key Project Risks and planned strategies for mitigation

Perceived Risk	Risk R	ating	Mitigation/Decompose Strategy								
Perceived Risk	Probability	Impact	Mitigation/Response Strategy								
Financial Risks:											
Driller (Hay Exploration) loses funding commitment for well from investors	LOW	HIGH	Identify alternate operator in Rogersville region								
Cost/Schedule Risks:											
Well drilling or completion delayed	MED	LOW	Drilling scheduled early in project, modest delays should not significantly affect project outcome								
Analytical lab results delayed	MED	LOW	Testing of sample material scheduled early in project, modest delays should not significantly affect project outcome								
Technical/Scope Risks:											
Equipment outages at analytical labs	LOW	LOW	Identify alternate vendors								
Wellbore condition prevents logging	LOW	MED	Will use logs from pilot hole and other nearby wells for facies and geomechanical analysis								
Tool malfunction/stuck in hole	LOW	LOW	Tools insured, modest delays should not significantly affect project outcome								
Ability to deploy fiber-optic production sensors 5 times over 12 months	MED	MED	Will attempt production analysis with lower resolution and/or different production logging techniques								
Management, Planning, and Oversight Risks:											
Loss of research team members (relocation, change employment, death, etc.)	LOW	MED	UK, WVU, and WVGES are large organizations with multiple research geologists and engineers. Alternate researchers would be identified and put onto CSRC payroll.								
ES&H Risks:											
Well blowout	LOW	HIGH	Safety equipment (BOP, pressure sensors/alarms, etc.) designed for well pad work will be in place.								
Waste or chemical spill at drill site	LOW	HIGH	Standard industry safety protocols and wellsite design will be used to prevent possible spills.								
External Factor Risks:	External Factor Risks:										
Unable to gain landowners permissions to sample minimum number of domestic water wells	MED	LOW	Will analyze existing data to see spread of values, option of sampling more wells over larger search radius possible.								

Budget Summary

The v	alues in this sum			ATEGORY COS	TS PROPOSED abs, only blank w	vhite cells requi	re data entru
Section A - Budget Summary	aiues in uns sun	inary table are in	om entries made	e in subsequent t	abs, only blank w	mite cens requi	le data entry
		Federal	Cost Share		Total Costs	Cost Share %	Proposed Budget Period Dates
	Budget Period 1	\$464,218	\$114,916		\$579,134	19.84%	10/01/19 - 03/31/20 (6 months)
	Budget Period 2	\$1,440,946	\$1,112,606		\$2,553,552	43.57%	04/01/20 - 03/31/21 (12 months)
	Budget Period 3	\$3,062,820	\$155,035		\$3,217,855	4.82%	04/01/21 - 09/30/22 (18 months)
	Budget Period 4	\$908,912	\$141,516		\$1,050,428	13.47%	10/01/22 - 09/30/23 (12 months)
	Total	\$5,876,897	\$1,524,073		\$7,400,970	20.59%	
Section B - Budget Categories							
CATEGORY	Budget Period 1	Budget Period 2	Budget Period 3	Budget Period 4	Total Costs	% of Project	Comments (as needed)
a. Personnel	\$77,613	\$223,676	\$203,756	\$224,223	\$729,269	9.85%	
b. Fringe Benefits	\$24,140	\$69,737	\$61,956	\$66,539	\$222,372	3.00%	
c. Travel	\$3,616	\$18,251	\$17,044	\$14,129	\$53,041	0.72%	
d. Equipment	\$0	\$162,677	\$0	\$0	\$162,677	2.20%	
e. Supplies	\$0	\$11,250	\$1,313	\$0	\$12,563	0.17%	
f. Contractual							
Sub-recipient	\$146,845	\$543,979	\$928,361	\$583,945	\$2,203,130	29.77%	
Vendor	\$0	\$1,199,430	\$1,196,208	\$0	\$2,395,638	32.37%	
FFRDC	\$0	\$0	\$0	\$0	\$0	0.00%	
Total Contractual	\$146,845	\$1,743,409	\$2,124,569	\$583,945	\$4,598,768	62.14%	
g. Construction	\$0	\$0	\$0	\$0	\$0	0.00%	
h. Other Direct Costs	\$194,700	\$31,183	\$16,124	\$0	\$242,007	3.27%	
Total Direct Costs	\$446,914	\$2,260,183	\$2,424,762	\$888,836	\$6,020,696	81.35%	
i. Indirect Charges	\$132,220	\$293,369	\$793,093	\$161,592	\$1,380,274	18.65%	
Total Costs	\$579,134	\$2,553,552	\$3,217,855	\$1,050,428	\$7,400,970	100.00%	

Budget, Contractual

SOPO Task #	Sub-Recipient Name/Organization	Purpose and Basis of Cost	Budget Period 1	Budget Period 2	Budget Period 3	Budget Period 4	Project Total
2,4	EXAMPLE!!! XYZ Corp.	Partner to develop optimal lens for Gen 2 product. Cost estimate based on personnel hours.	\$48,000	\$32,000	\$16,000		\$96,000
	5.87 · 1 · 1 · · · · · · · · · · · · · · ·			05 40 070		0500.045	\$0
4, 7, 8, 11	West Virginia University	petroleum engineering and geological analysis	\$146,845	\$543,979	\$928,361	\$583,945	\$2,203,130
							\$0
							\$0
							\$0 \$0
		Sub-total	\$146,845	\$543,979	\$928,361	\$583,945	\$2,203,130
SOPO	Vendor	Durrent and Davis of Cost	Budget	Budget	Budget	Budget	Project
Task #	Name/Organization	Purpose and Basis of Cost	Period 1	Period 2	Period 3	Period 4	Total
6	EXAMPLE!!! ABC Corp.	Vendor for developing robotics to perform lens inspection. Estimate provided by vendor.	\$32,900	\$86,500			\$119,400
							\$0
5	Schlumberger	open-hole well logging		\$199,430			\$199,430
6	Hay Exploration	drilling and well completion		\$1,000,000			\$1,000,000
9	Schlumberger	well production monitoring fiber optic sensor, 5 days of monitoring per run (5 runs in BP3)			\$1,196,208		\$1,196,208
							\$0
		Sub-total	\$0	\$1,199,430	\$1,196,208	\$0	\$2,395,638
SOPO	FFRDC	Durana and Davis of Cast	Budget	Budget	Budget	Budget	Project
Task #	Name/Organization	Purpose and Basis of Cost	Period 1	Period 2	Period 3	Period 4	Total
							\$0
							\$0
		Sub-total	\$0	\$0	\$0	\$0	\$0
	Total Contractual		\$146,845	\$1,743,409	\$2,124,569	\$583,945	\$4,598,768

Conasauga Shale Research Consortium

<u>KGS</u>:

John Hickman, David Harris, Rick Bowersox, Cortland Eble, Seth Carpenter, Marty Parris, Tom Sparks, Junfeng Zhu, Steve Webb, Jason Backus, Andrea Conner

WVGES:

Jessica Moore, Eric Lewis, Gary Daft, Sarah Brown, Phil Dinterman, Ron McDowell

<u>WVU</u>:

Doug Patchen, Tim Carr, Amy Weislogel, Kashy Aminian, Shahab Mohaghegh, (+3 future graduate students)

Industry Partner: Hay Exploration, Inc.

