All-digital Sensor System for Distributed Downhole Pressure Monitoring in Unconventional Fields

DE-FE0031781

Investigators:

Hai Xiao (PI), Clemson University Runar Nygaard (Co-PI), University of Oklahoma Brian McCutchen (Co-PI), Quest Test Facility LLC

Program Managers:

David Cercone, Project Manager, DOE/NETL John Golovach, Contract Specialist, DOE/NETL

DOE/NETL Project Kickoff Meeting, WebEx, October 4, 2019

Outline

- Project Elements/Overview
- Introduction and Technical Background
- Project Objective
- Key Personnel, Roles and Responsibilities
- Technical Approaches
- Scope of Work and Milestones
- Data Analytics/Machine Learning (DA/ML)
- Project Management Plan
- Risk Management

Project Elements/Overview

- Awarded under DOE DE-FOA-0001990 AOI 1A -Improving Ultimate Recovery from Unconventional Oil and Gas Resources
- Interdisciplinary team between two universities and an industry partner
 - Clemson University (Lead)
 - University of Oklahoma (Subcontractor)
 - Quest Drilling Facilities LLC (Subcontractor)
- Three-year project started on Oct. 1, 2019
- Total project budget: \$1,750,000 (\$1,500,000 from DOE and \$250,000 from the participants as costshare)

Background

Unconventional Oil and Gas (UOG) developments

- Became possible and profitable due to technological advancements such as extended-lateral horizontal drilling and multistage high-volume hydraulic fracturing
- Has dramatically increased U.S. production of oil and natural gas
- Are projected to contribute 70.1% of total U.S. oil production and 76.1% of total U.S. natural gas production in 2050 (EIA's 2018 Annual Energy Outlook)
- Are extremely cost sensitive and marginally economical in many instances
- Have low recovery efficiency (20% in gas-rich shale reservoirs and less than 10% in liquid-rich plays)
- Technology advancements to recover UOG resources are critical in maintaining future U.S. oil and gas production levels.

Pressure Monitoring for UOG

- Permanently-installed distributed downhole pressure sensors would
 - Monitor fracture propagation
 - Assess the overall effectiveness of hydraulic fracturing
 - Optimize hydraulic fracturing placement
 - Increase the recovery efficiency
- However, downhole distributed pressure sensors are too costly (>\$100k per well)

Existing Downhole Sensing System

Two general types of sensing systems

- Electronic sensors: point sensing, need downhole electronics, drift and costly
- Fiber sensors: distributed, no downhole electronics, drift and costly

Why High Cost?

Fiber sensors

- Optical fibers are intrinsically insensitive to pressure (unlike temperature and strain), so special fiber sensor devices need to be designed, fabricated and packaged
- Need rigorous packaging of the fragile optical fiber cable

Electronic sensors

- Rigorous packaging and high temperature electronics to battle errors and drifts of transducer materials, circuits, and the sensor structures
- Lack of multiplexing capability
- Complicated and specialized data telemetry from downhole to the surface

Proposed Solutions

- Do we really need downhole electronics?
- No, if we have an all-digital sensor, which has built-in nonelectronic amplification and the nonelectronic analog to digital converter (i.e., a mechanical ADC)
- A digital signal can be transmitted over a much longer distance than an analog signal
- Multiple digital sensors can be multiplexed together

An Example Design

- A bourdon tube as the sensing element
- Shorting pins mounted at the coil tip to touch a coding pad at the bottom as the bourdon tube rotates

blue = "open" = digital "0" yellow = "short" = digital "1"

Advantages for downhole sensing

- High-temperature and high-pressure capability
- Low-cost implementation
- Multiplexed for distributed sensing
- Reliable digital signal transmission over a long distance
- The all-digital platform can be modified to measure other downhole parameters such as temperature and acoustic

All-Digital Temperature Sensors

- A bimetallic coil that rotates when the environmental temperature changes
- Digital pad with open/short codes, with 10 bits to resolve 0.1%
- Passive RFID reading to allow battery-less and wireless operation

All-digital Pressure Sensors

- Bourdon tube as the pressure sensing element
- Stainless steel digital pad with 8-bit binary coding
- Tested and showed excellent response to pressure

 The main objective is to develop and validate a low-cost all-digital sensing technology for distributed downhole pressure monitoring in UOG fields.

The Team

- Hai Xiao (PI)
 - Professor, Electrical Engineering, Clemson University
 - Sensors and instrumentation
- Runar Nygaard (Co-PI)
 - Professor, Petroleum Engineering, University of Oklahoma
 - Drilling, simulation, testing and data analysis
- Brian McCutchen (Co-PI)
 - Operation Manager / Owner, Quest Test Facility LLC
 - Drilling and sensor deployment
- Svein Hellvik (Senior Personnel, Industry Advisor)
 - Senior Advisor New Technology Development, Engineering / Wellbore Technologies, National Oilwell Varco (NOV)
 - Drilling and well instrumentation

Roles, Responsibilities and Collaborations

Three Budget Periods

Budget Period I (12 months): Design, fabricate, package and validate of the all-digital pressure sensors.

Budget Period II (12 months): Develop and test time domain reflectometry (TDR) based sensor multiplexing technology, fabricate and validate the prototype sensors and instrumentation through pilot tests.

Budget Period III (12 months): Conduct a field test in a production well to demonstrate and confirm the performance of the proposal new distributed downhole pressure monitoring technology.

Technical approach

- Sensors: Design, engineer, fabricate, package and test/validate the all-digital pressure sensors to operate in harsh downhole environments with desired performance
- Instrumentation: Develop and test/validate TDR based sensor multiplexing methods for distributed pressure sensing
- **Pilot test and validate** the prototype sensors and instrumentation in research wellbores
- Field test and validate the integrated all-digital pressure monitoring system in a production well

Engineer the Sensors

- All metal design to survive high temperatures and minimize drift
- Stainless steel digital pad, ball head contact needles, and guiding grooves to minimize temperature dependence and sustain vibrations/shock
- Reduce the footprint of the sensor
- Hermetical metal packaging and sealed cable access
- Auxiliary coding mechanism to achieve high resolution in a high-pressure background

Instrumentation

TDR-based Remote Sensor Interrogation

(a) and (b) Typical TDR signals for open and short of the cable, respectively; (c) and (d) pictures of the TDR 2050 (TDR instrument) and LDE800 (booster), Megger Group Limited, respectively.

Laboratory Tests

Test the prototypes in a simulated downhole environment

- At high temperature (up to 250°C)
- At high pressure (up to 10,000 psi)

Sensor performance test facility available Clemson. The 6-foot long, 3-section furnace with a test chamber can test sensors at a simulated high temperatures and high pressure (up to 5,000psi) environment.

Schematic and photograph of the HPHT temperature sensor testing system at OU which can tests sensors up to 10,000 psi.

Tests in a Research Wellbore

- Two steps: 450 ft and 3,000 ft
- Wells drilled by Quest Test Facility in Payne county, OK
- Performance parameters
 - Survivability: Meaningful outputs are generated continuously from the installed sensors
 - Multiplexing capability: At least 5 sensors are multiplexed
 - Reaching distance: 3,000 ft downhole
 - Pressure resolution: 0.2% of its full scale
 - Pressure sensor stability (drift)

Field Tests

- Further testing in production or R&D wellbores
 - Fairway Resources or other OK operator production wells
 - University of Oklahoma R&D drilling wellbores
 - NOV R&D drilling site in Burton, TX
- Testing down to 10,000 ft. total well depth
- 10 sensors multiplexed

Gantt Chart

TASK / Milestone		Year 1								Year 2										Year 3								
		1	2 3	4	5 6	7	8	9 10) 11	12	13 1	4 15	5 16	17	18	19 20	21	22	23	24	25 26	6 27	28 2	9 30	31 3	32 33	34 3	5
1.0	Project Management and Planning																											
	Completed PMP.																											
2.0	Workforce Readiness for Technology Development				_																							-
	Identidy and plan for workforce needed for implementing proposed technology			- 1 - 1																								
3.0	Development of Data Management Plan																											
	Completed Data Management Plan.		-																									
4.0	Development of Technology Maturation Plan									→																		
	Completed Technology Maturation Plan.			- 1 - 1	-																							
5.0	Establish Technical Advisory Board, Sensor/System Requirements				╺┼╸	•																						
	5.1. Formation of a technical advisory board to manage research progress																											
	5.2. Establish the requirements for sensor and system development																											
6.0	Development and Testing of Downhole Pressure Sensors									≁																		
	6.1. Design all-digital pressure sensors																											
	6.2. Design all-digital sensor package				-																							
	6.3. Fabricate and test sensors																											
	GO-NO Go Decision 1																											
7.0	Development and Testing of Sensor Multiplexing Technique														→													
	7.1. Develop and test a multiplexing technique																											
8.0	Fabricate and Test Sensor Prototypes and Sensing System											-		→														
	8.1. Fabricate prototype sensors																											
	8.2. Assemble and test sensors											-	1															
9.0	Test Prototypes and Sensing System in Research Wellbore												-							→								
	9.1. Sensor test plan																											
	9.2. Report on test site readiness and sensor installation																											
	9.3. Test sensors in Quest research well																											
	9.4. Presearch well test report																											
	GO-NO Go Decision 2																											
10.0	Field Test of Technology in a Producing Well																											-
	10.1. Field test plan proved by TAB																											
	10.2. Field test results and test report																											
	10.3. Product installation on production well																											
	10.4. Field testing																											
	10.2. Analysis and report																											
11.0	Technology Transfer and Commercialization Plan																											_
	11.1 . Finalize technology transfer plam																											
	Final project report																											

Deliverables

Tasks/Subtasks	Deliverable title	Due date						
Task 1.0	Project Management Plan	Update due 30 days after award Revisions to the PMP shall be submitted as requested by the NETL Project Manager.						
Task 2.0Workforce ReadinessPlan		The initial plan is due with the first continuation application. Subsequent updates, as necessary, are due at continuation application intervals.						
Task 3.0 Data Management Plan		Due to DOE within 90 days after award and be updated as necessary throughout the project as requested by the Project Officer.						
Task 4.0	Technology Maturation Plan	Due with the first continuation application. Subsequent updates to the Plan, as necessary, are due at continuation application intervals.						
Task 5.0								
Subtask 5.1	Technical advisory board	Established within Q1						
Subtask 5.2	Sensor and instrument specifications	WRP due 30 days after Q2						
Task 6.0								
Subtask 6.1	Sensor schematics and key components test results	WRP due 30 days after Q2						
Subtask 6.2	Package design schematics & test results	WRP due 30 days after Q3						
Subtask 6.3	Sensor prototype laboratory test results	WRP due 30 days after Q4						
-		success criteria are: the sensor has a 0.5% or better resolution, and 6 as demonstrated under laboratory simulated conditions (250°C and						

Deliverables

Task 7.0	Test report on prototype instrument	WRP due 30 days after Q5									
Task 8.0											
Subtask 8.1	Prototype sensors and instrument	WRP due 30 days after Q5									
Subtask 8.2	Sensor and instrument test results	WRP due 30 days after Q6									
Task 9.0											
Subtask 9.1	Test plan	WRP due 30 days after Q5									
Subtask 9.2	Report on test site readiness and	WRP due 30 days after Q7									
	sensor installation										
Subtask 9.3	Sensor and system test results	WRP due 30 days after Q8									
Subtask 9.4	Research well test report	WRP due 30 days after Q8									
End of Phase II,	, Go/No Go point. The success criteri	a are 1) the system can multiplex at least 5 sensors, the									
reaching distance is at least 3,000ft, and 3) the pressure resolution is 0.2% or better, as demonstrated											
through the tests	s in research wellbores.										
Task 10.0											
Subtask 10.1	Field test plan proved by TAB	WRP due 30 days after Q9									
Subtask 10.2	System assembled and tested	WRP due 30 days after Q9									
Subtask 10.3	Report on test site readiness and	WRP due 30 days after Q10									
	sensor installation										
Subtask 10.4	Field test results and test report	WRP due 30 days after Q11									
Subtask 10.5	Field test reports	WRP due 30 days after Q12									
Task 11.0	Technology transfer plan	WRP due 30 days after Q12									
	Final project report	WRP due 90 days after completion of project									
The final proje	ct success criteria at the end of the	project are: 1) the system can multiplex at least 10									
		and 3) the pressure resolution is 0.2% or better, as									
· · · · · · · · · · · · · · · · · · ·	rough the tests in a production wellb	· · · · · · · · · · · · · · · · · · ·									

Data Analytics/Machine Learning (DA/ML)

Machine learning will determine

- Sensor accuracy
- Pressure sampling rate
- Sensor distribution
- Numerical simulation of fracturing and production will create training set to establish data driven models and input to sensor design.

Heat map of pressure variation in a horizontal oil producer in one year (synthetic data).

 $\delta p, \delta time$

Data Analytics/Machine Learning (DA/ML)

Data Analytics Workflow

Project Management

- PI responsible for managing and coordinating the project
- Weekly meetings within research sub groups
- Bi-weekly online meetings of the entire research groups (DOE manager invited)
- Bi-Annual review meetings with industry advisory board to review progress and input on field testing

Risk Management

Technical Risks

- Packaging and deployment of the sensors system in a harsh environment downhole.
- Large number of sensors to be multiplexed along the same cable.
- Not successful installation due to wellbore construction related issues.

Financial Risks

Schedule Risks

Management Risks

Mitigation

- Lab experiments and tests that take the downhole conditions into account.
- Add additional amplifiers, reduce the TDR pulse width, and monitor the phase.
- Extra sensors will be manufacture, which has been budgeted in this project.

Recycle or borrow cables to conduct field tests

Multiple sources of testing sites

Technical advisory board

Thank You!

Questions?