• Technology impact horizon

In order of "earliest to market" probability:

- Secure quantum networks for communications
- Quantum sensing that does not use entangled states: e.g. diamond NV Centers for temperature sensing & biological applications, atomic clocks, atomic interferometry for navigation etc.
- Quantum Computing: codebreaking, quantum chemistry problems, database sorting
 - >1000 logical qubits for solutions of general usefulness, superior to classical
 - Fault tolerant error correction as yet not demonstrated experimentally
 - Logical: Physical qubit ratios undetermined and as yet high
 - Quantum volume—error rates, no. of qubits, qubit connectivity, parallelism
- Quantum sensing using entangled states; 1/N uncertainty: gravitational waves, magnetic fields, lithography

Quantum Information Systems: scalable, patternable solid state systems

Major materials and process challenges

- Unlike Si CMOS: quantum processor system size (# of devices) is controlled by qubit error rates and not litho scaling.
- Very likely solid state coherent systems will be integrated with silicon at different intimacies—
- Needs are broadly compatible with exisiting process infrastructure (with some exceptions)

Challenges:

- 1) Miniaturization of devices: Bulk to nanoscale sizing
- 2) New materials discovery and integration with silicon tech.
 - Stability (such as coherence time) & variability (such as frequency) are key—materials response not well
 understood,
 - Master difficult to process and integrate material—tough oxides e.g.
 - Manipulation of quantum devices: nanophotonics becomes increasingly important
- 3) Atom scale nanofabrication—move away from non-deterministic processing

#1: Miniaturization of devices; example of the transducer

(Xufeng Zhang, Argonne)

Quantum transducer

THE UNIVERSITY OF CHICAGO

Chicago Quantum Exchange

New materials discovery and integration with silicon tech.....one more example

2) Oxides for solid state coherent quantum memory

- Implementing a long channel
 - Divide the channel into sections connected by quantum repeaters
- Quantum memories are central to these repeaters
- Large field of viable candidates
 - NV centers, defects in SiC, divacancies in Si/Ge, rare earth ions (REI) etc.

2) A scalable, oxide thin film platform for storing light qubits

Defect type	Coherence time (at mK)	Coherence time (at RT)	Retrieval Efficiency	Retrieval Fidelity
NV in Diamond	> 1 sec	> 100 us	> 75%	0.85
SiV in Diamond	> 10 ms	NA		-
SiC di-vacancies	> 1 ms	NA		-
Rare earth ions				
Eu in YSO	> 6 hours	NA	NA	-
Er in YSO	>1.3 sec	NA	>50%	0.93

- Er³⁺ optical transition lies in the telecom C band
- Yttria (Y₂O₃) is a low noise host material
- Y₂O₃ thin films can be grown epitaxially on Si
- Lithography can be used for at scale device development

Coupling to nanophotonic structures for quantum memories

Epitaxial growth of high quality rare-earth thin films on Si

Qualify Er:Y₂O₃ as a quantum memory Optical & Spin T₁ and T₂ measurements

Demonstration of a working quantum memory

CHICAGO QUANTUM EXCHANGE

 A Growing Intellectual Hub for the Science and Engineering of Quantum Information Science

Launching a communications testbed

- teleportation link
- encryption testbed

30 miles of single-mode telecom fiber

