U.S. DOE Office of Fossil Energy Solid Oxide Fuel Cell (SOFC) Program

Shailesh Vora

Technology Manager, Fuel Cells National Energy Technology Laboratory

To enable the generation of efficient, low-cost electricity with intrinsic carbon capture capabilities for:

- Near term: Natural gas-based distributed generation
- Long term: Coal and natural gas utility-scale applications with Carbon Capture and Sequestration (CCS)

SOFC Program Structure

Key Technologies

R&D Approach

- Applied Research
 - Cell and Core Technologies
 - TRL 2 5
 - Collaboration with an SOFC developer (industry) encouraged

• Development

- State-of-the-Art systems development
- Innovative Concepts
- TRL 5 6

Funding History

SOFC Program Project Portfolio

FY19 Participants

NATIONAL ENERGY

TECHNOLOGY LABORATORY

SOFC Program Metrics

Metric	Current	2020 Target	2025/2030 Target
System Cost (100 kW- 1MW)	>\$12,000/kWe	\$6,000/kWe	\$900/kWe
Single Cell Degradation	0.2 - 0.5% per 1,000 hrs		
Cell Manufacturing Approach	Batch	Semi- Continuous	Continuous
System Degradation	1 – 1.5% per 1,000 hrs	0.5 - 1.0% per 1,000 hrs	<0.2% per 1,000 hrs
Fuel Reformation	Primarily external natural gas conditioning/reforming	100% integrated natural gas reformation inside cell stack	
Durability	<2,000 hrs	5,000 hrs	5 years
Platform	Proof-of-Concept	Prototype/Pilot	DG: Commercial Utility-scale: Pilot
Configuration	Breadboard/Integrated systems	Fully packaged	Fully packaged
Fuel	Natural gas	Natural gas Simulated syngas	Natural gas Coal-derived syngas
Demonstration Scale	50 kWe – 200 kWe	200 kWe – 1 MWe	DG: MWe-class Utility-scale: 10 – 50 MWe

Single-cell performance and degradation are acceptable; stack and system performance, reliability and endurance need to be demonstrated

R&D Gaps

Cell and Stack Electrode Systems Engineering High Temp Optical **Degradation Modeling** and Analysis Engineering Sensors Development of • Mitigation of prominent Public dissemination of • Multi-application comprehensive predictive degradation modes SOFC market potential, technology under modeling tool Successful transfer of performance, and cost development for high Atoms to system scale temperature sensing technology to industry advantages bridging Hybrid configuration Demonstrated in SOFC • Validated through assessment • In-situ sensing of experiment • Tie to R&D goals and temperature distribution and gas composition objectives

- 200 kWe integrated SOFC Power System
- Test site: Clearway Energy Center, Pittsburgh, PA
- Natural gas fuel
- Grid Connected
- Operating Time:~2,500 hours

Photo courtesy FuelCell Energy

Outreach Activities

- NETL "Roadshow"
 - NETL facilitated one-on-one interaction between National Labs and Industry
- SOFC Program Roundtable
 - NETL facilitated annual meeting with select program participants (10-15 on rotating basis) to identify crosscutting issues
- SOFC Program Workshop
 - Annual meeting for SOFC Program participants and the fuel cell community
 - Held jointly with EE&RE
- Monthly teleconferences with all DOE offices working on fuel cells

Report to Congress

At the request of Congress, DOE Office of Fossil Energy has written a Report on the Status of the Fuel Cells Program. Changes in Timeline and activities are recommended.

Activity	2018-2020	2021-2024	2025-2030
Industrial Engagement	Data sharing and scaling of commercial systems		
2025 Validation and FEED Studies (Ongoing)	200 kWe Long-Term Testing 5,000 and up to 8,000 hours FEED Study for 1MWE SOFC System		
Early-Stage Applied and Basic SOFC R&D on Coal Syngas for Electricity and Hydrogen Generation	Effects of High-Temperature Operations on Materials Degradation		

Office of Fossil Energy:www.energy.gov/fe/office-fossil-energyNETL Website:www.netl.doe.gov/

Dr. Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory U. S. Department of Energy 412-386-7515 Shailesh.Vora@netl.doe.gov

