SOFC Program Mission

To enable the generation of efficient, low-cost electricity with intrinsic carbon capture capabilities for:

• Near term: Natural gas-based distributed generation

• Long term: Coal and natural gas utility-scale applications with Carbon Capture and Sequestration (CCS)
SOFC Program Structure

Key Technologies

SOLID OXIDE FUEL CELLS

- Cell Development
- Core Technology
- Systems Development

Figure courtesy FuelCell Energy
Figure courtesy LG Fuel Cell Systems
Figure courtesy NETL
SOFC Program

R&D Approach

• **Applied Research**
 • Cell and Core Technologies
 • TRL 2 – 5
 • Collaboration with an SOFC developer (industry) encouraged

• **Development**
 • State-of-the-Art systems development
 • Innovative Concepts
 • TRL 5 – 6
SOFC Program

Funding History

Annual Appropriation, $M

SOFC Program Project Portfolio

FY19 Participants
<table>
<thead>
<tr>
<th>Metric</th>
<th>Current</th>
<th>2020 Target</th>
<th>2025/2030 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Cost (100 kW-1MW)</td>
<td>>$12,000/kWe</td>
<td>$6,000/kWe</td>
<td>$900/kWe</td>
</tr>
<tr>
<td>Single Cell Degradation</td>
<td>0.2 - 0.5% per 1,000 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Manufacturing Approach</td>
<td>Batch</td>
<td>Semi- Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>System Degradation</td>
<td>1 - 1.5% per 1,000 hrs</td>
<td>0.5 - 1.0% per 1,000 hrs</td>
<td><0.2% per 1,000 hrs</td>
</tr>
<tr>
<td>Fuel Reformation</td>
<td>Primarily external natural gas conditioning/reforming</td>
<td>100% integrated natural gas reform inside cell stack</td>
<td></td>
</tr>
<tr>
<td>Durability</td>
<td><2,000 hrs</td>
<td>5,000 hrs</td>
<td>5 years</td>
</tr>
<tr>
<td>Platform</td>
<td>Proof-of-Concept</td>
<td>Prototype/Pilot</td>
<td>DG: Commercial Utility-scale: Pilot</td>
</tr>
<tr>
<td>Configuration</td>
<td>Breadboard/Integrated systems</td>
<td>Fully packaged</td>
<td>Fully packaged</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas</td>
<td>Natural gas</td>
<td>Natural gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulated syngas</td>
<td>Coal-derived syngas</td>
</tr>
<tr>
<td>Demonstration Scale</td>
<td>50 kWe - 200 kWe</td>
<td>200 kWe - 1 MWe</td>
<td>DG: MWe-class Utility-scale: 10 - 50 MWe</td>
</tr>
</tbody>
</table>

Single-cell performance and degradation are acceptable; stack and system performance, reliability and endurance need to be demonstrated.
SOFC Program

R&D Gaps

- **CELLS**
- **STACKS**
- **SYSTEMS**

** Topics **
- Manufacturing/QC
- Chemical Instability
- Contacs
- Seals
- Degradation
- Reliability
- System Integration
- Balance of Plant Operations
SOFC R&D at NETL

Cell and Stack Degradation Modeling
- Development of comprehensive predictive modeling tool
- Atoms to system scale bridging
- Validated through experiment

Electrode Engineering
- Mitigation of prominent degradation modes
- Successful transfer of technology to industry

Systems Engineering and Analysis
- Public dissemination of SOFC market potential, performance, and cost advantages
- Hybrid configuration assessment
- Tie to R&D goals and objectives

High Temp Optical Sensors
- Multi-application technology under development for high temperature sensing
- Demonstrated in SOFC
- In-situ sensing of temperature distribution and gas composition
SOFC R&D at PNNL

Materials
- Quantitative understanding of Cr poisoning
- Validation of Cr capture materials
- Enhanced reliability of cathode/contact material interfaces
- Cobalt-free protective coatings for metallic interconnects

Modeling
- Advanced Reduced Order Models (ROM) for accurate simulation of stack performance in system models
- Modeling to mitigate stack degradation and increase reliability

Small-Scale SOFC Test Platform
- Designed and fabricated SOFC test platform (1-10 kW)
- Used for evaluation of performance and reliability of emerging stack technologies
- First technology to be tested: Ceres Power stack module (~4 kW)
SOFC Power System
FuelCell Energy 200 kW Prototype Field-Test

- 200 kWe integrated SOFC Power System
- Test site: Clearway Energy Center, Pittsburgh, PA
- Natural gas fuel
- Grid Connected
- Operating Time: ~2,500 hours

Photo courtesy FuelCell Energy
SOFC Program

Outreach Activities

• NETL “Roadshow”
 • NETL facilitated one-on-one interaction between National Labs and Industry

• SOFC Program Roundtable
 • NETL facilitated annual meeting with select program participants (10-15 on rotating basis) to identify crosscutting issues

• SOFC Program Workshop
 • Annual meeting for SOFC Program participants and the fuel cell community
 • Held jointly with EE&RE

• Monthly teleconferences with all DOE offices working on fuel cells
At the request of Congress, DOE Office of Fossil Energy has written a Report on the Status of the Fuel Cells Program. Changes in Timeline and activities are recommended.

SOFC Program

Report to Congress

At the request of Congress, DOE Office of Fossil Energy has written a Report on the Status of the Fuel Cells Program. Changes in Timeline and activities are recommended.

<table>
<thead>
<tr>
<th>Activity</th>
<th>2018-2020</th>
<th>2021-2024</th>
<th>2025-2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Engagement</td>
<td></td>
<td></td>
<td>Data sharing and scaling of commercial systems</td>
</tr>
<tr>
<td>2025 Validation and FEED Studies (Ongoing)</td>
<td></td>
<td>200 kWe Long-Term Testing 5,000 and up to 8,000 hours</td>
<td>FEED Study for 1MWE SOFC System</td>
</tr>
<tr>
<td>Early-Stage Applied and Basic SOFC R&D on Coal Syngas for Electricity and Hydrogen Generation</td>
<td></td>
<td>Effects of High-Temperature Operations on Materials Degradation</td>
<td></td>
</tr>
</tbody>
</table>
For Additional Information

NETL Website: www.netl.doe.gov/

Dr. Shailesh D. Vora
Technology Manager, Fuel Cells
National Energy Technology Laboratory
U. S. Department of Energy
412-386-7515
Shailesh.Vora@netl.doe.gov