U.S. DOE Office of Fossil Energy Solid Oxide Fuel Cell (SOFC) Program

Shailesh Vora

Technology Manager, Fuel Cells National Energy Technology Laboratory

14th Annual Electric Power Industry Conference University of Pittsburgh

October 28, 2019

Fuel Cells Are....

- Energy conversion devices
- > Highly efficient
- > Modular
- A family of technologies characterized by the electrolyte:
 - Low Temperature
 - Proton Exchange Membrane (PEM)
 - Phosphoric Acid (PAFC)
 - High Temperature
 - Molten Carbonate (MCFC)
 - Solid Oxide (SOFC)

SOFC Power System

Figure courtesy LG Fuel Cell Systems

To enable the generation of efficient, low-cost electricity with intrinsic carbon capture capabilities for:

- Near term: Natural gas-based distributed generation
- Long term: Coal and natural gas utility-scale applications with Carbon Capture and Sequestration (CCS)

Distributed Generation Technologies

Net Electric Efficiency (HHV) %

*For non-grid-support applications storage costs (2000 \$/kW - 3000 \$/kW) may need to be included

SOFC DG System Cost Reduction via RD&D and high volume manufacturing

SOFC Program Structure

Key Technologies

TECHNOLOGY AREA	KEY TECHNOLOGIES	
SOLID OXIDE FUEL CELLS	Cell Development	
	Core Technology	Figure courtesy NETL
	Systems Development	Figure courtesy LG Fuel Cell Syster

SOFC Program

R&D Approach

- Applied Research
 - Cell and Core Technologies
 - TRL 2 5
 - Collaboration with an SOFC developer (industry) encouraged

• Development

- State-of-the-Art systems development
- Innovative Concepts
- TRL 5 6

SOFC Program

Funding History

SOFC Program Project Portfolio

FY19 Participants

SOFC Program Technology Evolution

NATIONAL ENERGY TECHNOLOGY LABORATORY

SOFC Program Metrics

Metric	Current	2020 Target	2025/2030 Target
System Cost (100 kW- 1MW)	>\$12,000/kWe	\$6,000/kWe	\$900/kWe
Single Cell Degradation	0.2 - 0.5% per 1,000 hrs		
Cell Manufacturing Approach	Batch	Semi- Continuous	Continuous
System Degradation	1 – 1.5% per 1,000 hrs	0.5 - 1.0% per 1,000 hrs	<0.2% per 1,000 hrs
Fuel Reformation	Primarily external natural gas conditioning/reforming	100% integrated natural gas reformation inside cell stack	
Durability	<2,000 hrs	5,000 hrs	5 years
Platform	Proof-of-Concept	Prototype/Pilot	DG: Commercial Utility-scale: Pilot
Configuration	Breadboard/Integrated systems	Fully packaged	Fully packaged
Fuel	Natural gas	Natural gas Simulated syngas	Natural gas Coal-derived syngas
Demonstration Scale	50 kWe – 200 kWe	200 kWe – 1 MWe	DG: MWe-class Utility-scale: 10 – 50 MWe

Single-cell performance and degradation are acceptable; stack and system performance, reliability and endurance need to be demonstrated

U.S. DEPARTMENT OF

NERGY

SOFC Power System FuelCell Energy 200 kW Prototype Field-Test

- 200 kWe integrated SOFC Power System
- Test site: NRG Energy Center Pittsburgh, PA
- Natural gas fuel
- Grid Connected
- ~3,000 hours of operation

200 kW SOFC Oneline HMI Screen

NATIONAL ENERGY TECHNOLOGY LABORATORY

Current Control:

Individual set-point sent to respective Inverter

Next Generation Stack Technology

Baseline Large Area Stack (LAS):

- 76 W/kg
- 185 W/L

Compact SOFC Architecture (CSA)

Full Height CSA Stack: • 470 W/kg

• 780 W/L

SOFC Program

Key Takeaways

- Program emphasizing the resolution of design, operation, and performance considerations at the system level
- Acquiring fabricating and operational experience on integrated, prototype field tests based on state-of-theart cell and stack technology
- Cell Development and Core Technology research continues and is well aligned with industry need

Office of Fossil Energy:www.energy.gov/fe/office-fossil-energyNETL Website:www.netl.doe.gov/

Dr. Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory U. S. Department of Energy 412-386-7515 Shailesh.Vora@netl.doe.gov

