Advanced Electric Machines – University R&D Role

Asst. Prof. Eric L. Severson

University of Wisconsin-Madison

eric.severson@wisc.edu

WEMPEC

Wisconsin Electric Machines and Power Electronics Consortium

- Founded in 1981 with 4 corporate sponsors
 - Founders: Prof. Don Novotny and Prof. Tom Lipo
- People
 - 5 Faculty (and growing!)
 - 3 Emeritus Faculty
 - 40 PhD Students_(on campus)
 - 13 MS Students_(on campus)
 - 97 off campus students
 - 7 Visiting scholars
 - > 510 alumni
- Degrees granted
 - > 425 MS
 - >160 PhD

My Research Interests: design and control of

Power-Speed Capability of Electric Machines

Highest Speed-Power Motors (with bearings)¹

Magnetically Levitated Motor Systems

Legacy Bearingless Motors Use Two Windings

- Reduce torque/power
 - by 25% 50%
- Decrease efficiency
- Expensive to manufacture

Image from

WEMPEC

Combined Windings

- Same coils for force and torque
- Improved performance:
 - $\approx 40\%$ increase in torque density
 - $\approx 1 3\%$ increase in efficiency
- "No Voltage Combined Windings"
 - Better performance at extreme

speeds

50 kW, 30 kRPM Compressor Optimization

[1] J Chen, J Zhu, E. Severson, "Review of Bearingless Motor Technology for Significant Power Applications," IEEE Trans on Ind. App., 2020 [2] E Severson, et al, "Design of dual purpose no voltage combined windings for bearingless motors," IEEE Trans. on Ind. App., 2017.

Enable a Shift in Power-Speed Capability

- [1] D. Gerada et al, "High-speed electrical machines: Technologies, trends, and developments," IEEE Trans on Ind. Elec., 2013
- [2] J Chen, J Zhu, E. Severson, "Review of Bearingless Motor Technology for Significant Power Applications," *IEEE Trans on Ind. App., 2020*

WEMPEC

Turbomachinery Bearingless Motor Concepts

1) Complete magnetic levitation

5-DOF Bearingless Motor

2-DOF Bearingless Motor^[2]

2) Hybrid: Conventional bearings + bearingless motor

Use bearingless motor to improve rotor dynamics (instead of levitation)

- [1] J Chen, J Zhu, E. Severson, "Review of Bearingless Motor Technology for Significant Power Applications," *IEEE Trans on Ind. App., 2020* [2] H. Mitterhofer et al, "On the high speed capacity of bearingless drives." *IEEE Trans on Ind. Flec., 2014*
- [2] H. Mitterhofer et al, "On the high speed capacity of bearingless drives," IEEE Trans on Ind. Elec., 2014
- © University of Wisconsin Board of Regents

Role of Universities

- Universities thrive at low TRLs
- Many pathways to funded research:
 - Industrial sponsored research projects
 - Gift funding
 - Industry consortia
 - Collaboration on federal grants and SBIR/STTR
- IP agreements can be difficult, but the trend is toward more flexible terms

University Research Needed:

- Electric machine design
 - New topologies and concepts (i.e., magnet-free, hybrid)
 - Design optimization
- Power electronics
 - Advanced topologies to reduce cost, increase efficiency
 - Meet unique needs of new electric machinery

Control

- Self-sensing
- Precise actuation
- Rotor dynamics

Thank you!

