Reversing Turbomachinery: A Central Enabling Technology of Thermal Grid Storage

R. B. Laughlin TMCES, Pittsburgh, 3 Feb 20

R. B. Laughlin, "Pumped Thermal Grid Storage With Heat Exchange," J. Renew. Sustain. Energy **9**, 044103 (2017).

The Problem – Part I

Source: "BP Statistical Review of World Energy 2018," British Petroleum, June 2018.

The Problem – Part II

Source: "Renewables Watch for Operating Day: Monday, 01 April, 2019," California Independent System Operator, 2019.

YOU HAVE JUST CROSSED OVER INTO...

The Problem – Part III

Sources: R. Fu et al., NREL/TP-6A20-7174, Nov. 18; S. Few *et al.*, Energy Policy **114**, 578 (2018); D. Feldman *et al.*, NREL/TP-6A20-66592, Aug. 16; T. Key *et al.*, EPRI 1023144, Feb 13; T. Lüth *et al.*, Energy Proc. **155**, 379 (2018); C. S. Turchi *et al.*, NREL/TP-5506-22856, May 19; N. Diorio *et al.*, NREL/TP-6A20/64987, Nov. 15.

Idea!

With Closed-Cycle Brayton Engine

Source: J. Ackeret u D. C. Keller, "Aerodynamische Brennkraftmaschine mit geschlossenem Kreislauf," Zeitschrift des Vereines Deutscher Ingenieure **85**, No. 22, 491 (1941).

Viola! Reversible Thermal Storage

Recuperated Version

Ideal Adiabatic Cycle

Actual Cycle

Relevant Equations

Ideal Adiabatic:
$$\frac{dT}{T} = (\frac{\gamma - 1}{\gamma}) \frac{dp}{p}$$
 $T = \text{Temperature}$ $p = \text{Pressure}$

Compressor: $\frac{dT}{T} = \frac{1}{\eta_c} (\frac{\gamma - 1}{\gamma}) \frac{dp}{p}$ $\gamma = \text{Specific Heat Ratio}$

Turbine: $\frac{dT}{T} = \eta_t (\frac{\gamma - 1}{\gamma}) \frac{dp}{p}$ $\eta_c = 0.91$ $\eta_t = 0.93$

$$\xi = T_0^+/T_0 = T_1^+/T_1$$

$$\eta_{store} < 1 - \frac{2T_{Dump}}{T_1 - T_0} (\frac{1}{\eta_c} - \eta_t) \frac{\ln(\xi)}{\xi - 1} = 0.7$$

R. B. Laughlin, "Pumped Thermal Grid Storage With Heat Exchange," J. Renew. Sustain. Energy **9**, 044103 (2017).

The Problem – Part IV

Old Mandate: Minimize Weight!

... Load Turbine Stages Heavily!

Source: M. Kazari and R. Tanaka, "Improving Cooling Effectiveness of Gas Turbines Through Design Exploration," Power Engineering International, 1 Nov 16.

New Mandate: Minimize Cost

... Load Turbine Stages Lightly!

Reversible Blading Strategy

Reversible Compressor

Reversible Turbine

... But Modern Turbocompressors Already Have This Property!

Left: Rotor of Siemens SGT5 series power gas turbine. (Courtesy of Siemens AG) **Right:** Stators of General Electric J79 aircraft engine (progenitor of LM1500 stationary gas turbines) on display at Deutsches Museum in Munich. (Credit: O. Cleynen).

Designed as a *Charge* Compressor, it functions reaso

Image Courtesy of Brayton Energy LLC, 3 Feb 20.

Majority of the entropy is generated in the w Brayton Energy us ence

Image courtesy of Brayton Energy LLC, 3 Feb 20.

The Reversible Turbomachine Is Essential Because ...

... It Reduces the \$ per Engine Watt by a Factor of 2

