

Supercritical CO<sub>2</sub>-Based Long-Duration Electrical Energy Storage

#### **Echogen overview**

- Founded in 2007
- Mission: To develop and commercialize a better exhaust and waste heat recovery power system using CO<sub>2</sub> as the working fluid





### sCO<sub>2</sub> power cycle commercial activity

- Key partnerships Siemens (Oil & Gas), GE (Marine)
- First commercial article (EPS100 7.5 MWe) designed and built by Echogen, tested at Siemens
- First commercial sale (EPS120 9.5 MWe) announced in March 2019 by Siemens to TransCanada









# Ongoing Echogen projects

- Leading multiple DOE- and industry-funded projects in:
  - Nuclear Micro-reactor power plant, others
  - Fossil 10 MWe indirectly-fired power plant (FE)



- Solar thermochemical energy storage (SETO)
- Energy Storage (ARPA-E)
- Thermal power plant integration with ETES (Coal FIRST)
- Large-scale (100 MWe+) CO<sub>2</sub> compressor technology development (SETO)



## ETES (or TEES, or PTES, or Carnot Battery) storage



Ideal cycle RTE =  $COP_{Carnot} \times \eta_{Carnot} = 100\%$ 

Non-ideal processes result in RTE ~60%, even at modest temperature ratio





HTX heat transfer is supercritical - sensible enthalpy transfer interaction with HTR

LTX is subcritical – condensation and evaporation - ~ constant temperature interaction with LTR





# Longer Duration = Lower Capex/kWh = Lower LCOS





Lower Capex => Lower LCOS



### ETES lab-scale system



#### ARPA-E funded project

~200 kWth system, including both charging and generating cycles

Focused on reservoir and heat exchanger development and TEA

Operation and controls development





#### Services:

Arbitrage – Yes (if economics support)

RES smoothing – "
Peak capacity – "
Seasonal storage – No

#### **Technical requirements**

Round trip efficiency as high as possible - \$ vs RTE trade

Low thermal loss – Small  $\Delta T$  to environment

Modularity and scalability – Yes – 10-100 MWe blocks

Cycling capacity => small degradation during lifetime – Typical power plant

Compactness and affordability of storage medium - Very

Low CAPEX for energy conversion system – Yes at longer durations

High flexibility during charging phase – TBD

Compatibility for retrofitting existing plant – Yes

Compatibility with district heating and cooling – Yes

Safety and chemical hazard – Excellent



