Thermal-Mechanical-Chemical Energy Storage Technology Overview

Timothy C. Allison, Ph.D.

Director, Machinery Department

Southwest Research Institute

TMCES Workshop

Pittsburgh, PA

February 4, 2020

SwRI is an Applied Research & Development Company

- Founded in 1947, based in San Antonio, Texas
- 501 (c)(3) nonprofit corporation
 - Internal Research
 - New Laboratories
- ~\$600M Annual revenue from contract work for industry and government clients
- Over 2,600 employees
- 1,200-acre facility; 2.3 million square feet of laboratories & offices
- Flexible IP policy
- Machinery Department: 70 employees, 5 labs with turbomachinery trains up to 14 MW

Large-Scale Long-Duration Energy Storage is Needed to Enable Deep Renewable

SwRI

Penetration

- Variability, demand mismatch of wind and solar
- Studies show that storage on the order of ~1x daily energy production may be needed¹
- Storage at renewable plant or baseload plant absorbs ramps/transients
- The storage need for a large city ranges from ~ 25 GWh (4 hours storage in Phoenix) - 840 GWh (daily consumption in Tokyo)

1-35 of the world's largest pumped hydro system...

...or 23-763 of these molten salt tanks

¹Solomon, A.A. *et al*, 2017.

Why Not Batteries?

- Batteries offer low \$/MW but high \$/MWh for significant durations above 2-6 hours
 - Energy and power both scale by adding cells
- Other concerns:
 - Rare-earth material sourcing (lithium, cobalt)²
 - Degradation³
 - No viable recycling option⁴
 - Thermal management/runaway⁵
- Other technologies offer promise of decoupling power with low-cost energy storage

Image Source: S&P Global (2019)

Global Energy Storage Timeline

Pumped Hydro Storage

New Long-Duration Energy Storage Technologies are Needed

http://css.umich.edu/sites/default/files/U.S. Grid Energy Storage Factsheet CSS15-17 e2018.pdf

New Long-Duration Energy Storage Technologies are Needed

- New systems will need:
 - Lower cost than pumped hydro or batteries
 - Higher round-trip efficiency and fewer carbon emissions than gas-fired CAES
 - Longer duration than flywheels
 - Non-specific geology (no mountains or salt caverns)
- Many new system options are based on thermodynamic cycles:
 - Pumped heat energy storage (PHES)
 - Adiabatic or hydrogen-fired CAES
 - Liquid air energy storage (LAES)
 - Thermochemical
 - Hydrogen-based
 - Synthetic natural gas
 - Closed sulfur cycle

Diabatic CAES

Example PHES

Image Source: Tom (2019)

Mechanical ES: Pumped Hydro

- Potential energy of water using reservoirs at different elevations
- Decades of commercial experience
- Mature turbomachinery
 - Reversible (Francis) pump-turbine
 - Ternary sets
- Technology Gaps/Development
 - Geography-specific concept -> siting limitations
 - High capital cost
 - Modular pumped hydro; subsurface; subsea; open-loop
- Expected Performance
 - 70-85%+ round trip efficiency
 - >40 year life

Data Source: Luo et al (2015)

Francis Turbine Runner, 1942

World's First PSH System, 1930

Mechanical ES: Compressed Air Energy

Storage

- Energy stored in large volumes of compressed air; supplemented with heat storage (adiabatic CAES)
- Centrifugal/axial machinery in existing concepts derived from gas turbine, steam turbine, integrally-geared compressor.
- TRL 9 for diabatic; 5-6 for adiabatic CAES
- Two existing plants at Huntorf & McIntosh
- Technology gaps/development
 - Site-specific; requires salt dome
 - Adiabatic CAES: heat exchange, storage concepts; reciprocating isothermal CAES; constant-head CAES; hydraulic compression; subsea CAES
- Expected performance
 - 40-50% for diabatic CAES, ~50-70% for adiabatic CAES

Diabatic (top) and Adiabatic (bottom) CAES

Mechanical ES: Flywheels

- Store energy as rotating kinetic energy
 - Vacuum environment for loss minimization
- TRL 9, commercially available as UPS
- Technology gaps / development
 - High standby losses; Low power density
 - Improved strength:weight materials; minimize electrical losses; superconducting magnetic bearings
- Expected performance
 - 90-95% round-trip efficiency
 - Nearly infinite cycle lifetime
 - Very short response time

20 MW Flywheel Plant for NYISO

Image Sources: Beacon Power

Data Source: Amiryar and Puleln (2017), Luo et al (2015)

Mechanical ES: Gravitational

- Electricity used for elevation of solid mass
 - Subsurface with wind/hydraulic pump
 - On-surface with rail cars or towers
- High component TRL, including motor/generator and hydro pump/turbine
- System TRL 4-5, demonstrators/pilots funded
- Technology gaps/development
 - Overall system immaturity; Loss minimization Sealing of hydraulic systems; position control
- Claimed Performance:
 - 80-90% Charge/Discharge Efficiency
 - 30-60% cost of pumped hydro
 - 1-10 s response

Gravitricity

Image and Data Sources:

https://energyvault.ch/

https://www.gravitricity.com/

https://www.aresnorthamerica.com/grid-scale-energy-storage https://heindl-energy.com/technical-concept/basic-concept/

Thermal ES: Storage Overview

- Sensible storage raises or lowers temperature of singlephase material
 - Molten salts, thermal oil, water, rocks, concrete, rocks, etc.
- Latent heat storage changes phase, typically liquid-solid transition
 - Ice, Phase change material (PCM)
- Direct (heat transfer and storage with same medium) or indirect systems
- Two-tank or thermocline storage
- Technology gaps/development
 - Corrosion and thermal/cyclic stability
 - Low-cost compact high-performance heat exchangers
 - Molten salts above 565 °C; salt pumps & tanks
 - Particle thermal storage & heat transfer
 - Encapsulated PCMs
 - Low-cost cold storage

Image Source: Shultz (2019)

Temperature Falls

https://www.ice-energy.com/

Thermal ES: Pumped Heat

- Electricity drives heat pump to charge system, creating temperature difference; Heat engine discharges system for electricity out
- Working fluids: Argon, air, sCO₂
- Machinery is conceptually like a gas turbine, but some key differences.
- Two prominent designs
 - Thermoclines and reciprocating machinery: Isentropic UK / Newcastle Univ.
 - Packed bed stores (gravel)
 - Heat exchangers and turbomachinery: Brayton Battery / Malta Inc.
 - Hot store- molten salt
 - Cold store- refrigerant
- Technology gaps / development
 - Heat exchangers, machinery, cycle/system
- Predicted 50-70% RTE

Charge Mode: Heat Pump

Discharge Mode: Heat Engine Hot Source Tank Hot Storage Tank Hot Heat Exchanger 1Q1 Discharge Compressor Workout Discharge Turbine 1 Q I Cold Heat Exchanger Cold Source Tank Cold Storage Tank

Thermal ES: Liquid Air

- Similar to CAES but different process liquefies air for compact, portable storage
 - Claude cycle for liquefaction with thermal storage
- Utilizes existing technology for nitrogen storage, radial turbomachinery (at pilot scale).
- Technology gaps /development
 - Overall system efficiency and costs via turbomachinery and heat exchanger development; system / cycle variations & maturity
 - Water handling; Large-scale system development (5-50 MW); Synergy with waste heat, flywheels
- Expected Performance
 - 60-70% efficiency and 30-40 year lifespan
 - Storage losses as low as 0.05% by volume per day (Yang, 2006)

Thermochemical ES: Hydrogen

SwRI

- Use excess grid energy to split water in to H2 with electrolysis or reform methane
- Salt dome storage is mature, production and utilization under development.
- Technology gaps and development
 - High cost, low RTE
 - High temperature electrolysis
 - Feedstock availability required
 - High pressure storage location and safety
 - H2 transport and compression challenges
 - Couple with CSP or other heat source instead of using surplus energy to drive electrolysis
- Expected Performance ~10-30% round trip efficiency, targeting 50%

https://www.edie.net/news/6/Work-to-being-on-pioneering-salt cavern-hydrogen-storage-scheme/

Store

 H_2 at high pressure H_2O_2 , other carriers

Discharge

Use for electricity/power generation:

Hydrogen gas turbine / fuel cell

Reaction heat release

Sell

Use for refining
Use for NG or Ammonia

Thermochemical ES: Sulfur

- Principle
 - Closed sulfur cycle include SO₂
 Disproportionation, Sulfur combustion, and sulfuric acid decomposition
- Turbomachinery Integration
 - GT and heat exchangers for sulfur
- Current TRL: 3-5
- Technology Gaps
 - Overall system complexity and integration
- Expected Performance
 - High energy density
- R&D Activities
 - General Atomics development with CSP
 - Form Energy with ARPA-E DAYS

Development Needs for Energy Storage:

Machinery & HX

- Most new thermodynamic systems are closed or semi-closed cycles requiring:
 - Very high machinery efficiency over a variety of temperatures, pressures, and scales (radial→axial)
 - Low leakage/makeup requirements; consider hermetic machinery
 - High pressures, densities, possibly temperatures
 - PHES: High-temp compressor; single machinery train for charge/discharge mode
- Integration of compression, expansion, and heat exchange functionality into machinery to improve cost and performance
- Hydrogen combustion, compression
 - Emissions, stability/range
 - High tip speeds or many stages
- Fast ramping and wide operating range
- Low-cost compact HX for gas-liquid and with fast transient capability

High-Efficiency High-Temperature 10 MWe 715 °C Supercritical CO₂ Turbine with Low-Leakage Dry Gas Seals (Moore 2019)

CO2 Compressor for CCS with Internally-Cooled Diaphragms (Moore 2014)

Wet Gas Compression Test (Musgrove 2016)

Development Needs for Energy Storage:

Systems

- Control & operation experience of closed or semiclosed cycles
 - Inventory control for turndown; ambient conditions
 - Leakage management / recovery
 - Trip & settle-out scenarios
 - Charge/discharge mode system balancing
- Detailed plant design & cost optimization
- Integration/optimization with numerous generators and applications
 - Coal, Gas, Nuclear, Concentrating Solar, Waste Heat, Combined Heat & Power, Geothermal
 - Sector coupling with heating, cooling applications
 - Existing Brayton/Rankine cycles, advanced power cycles
 - Storage for time-shifting CCS

Current SwRI R&D – Pumped Thermal

Energy Storage Demo

- Project funded by DOE/ARPA-E;
 Partnered with Malta, Inc.
- Advance PHES from concept to a kWscale system demonstration in 27 months
 - Focus on system operation and integration
 - Evaluate control strategies for system startup, shutdown, and mode change
 - Gather performance data to verify system model (10 MWe, 10 hrs at rated power)

Charge Mode: Heat Pump

Discharge Mode: Heat Engine

Questions?

Tim Allison, Ph.D.
Southwest Research Institute
(210) 522-3561
tim.allison@swri.org

References

- [1] Solomon, A.A., Child, M., Caldera, U., and Breyer, C., "How much energy storage is needed to incorporate very large intermittent renewables?" *Energy Procedia*, Vol. 135:283-293, Elsevier, 2017.
- [2] Olivetti, E.A., Ceder, G., Gaustad, G.C., Fu, X., "Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals," *Joule 1*, 229-243, Elsevier, 2017.
- [3] Mongird, K., Viswanathan, V., Balducci, P., Alam, J., Fotedar, V., Koritarov, V., and Hadjerioua, B. "Energy Storage Technology and Cost Characterization Report," PNNL-28866, U.S. DOE, July 2019.
- [4] "Is There Enough Lithium to Feed the Need for Batteries?" Green Journal, February 2018, https://www.greenjournal.co.uk/2018/02/is-there-enough-lithium-to-feed-the-need-for-batteries/ [accessed December 15, 2019].
- [5] Hering, G., "Burning Concern: Energy storage industry battles battery fires," S&P Global Market Intelligence, May 2019, https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/51900636 [accessed December 15, 2019].