

Particle-based solar thermochemical and thermal energy storage

Peter G. Loutzenhiser
Solar Fuels and Technology Laboratory
Woodruff School of Mechanical Engineering
Thermal-Mechanical-Chemical Electricity Storage
Workshop
February 4, 2020

Solar potential and limitations

Annual solar irradiation in the United States

Limitations of Solar Energy

- **Dilute:** Maximum directnormal solar irradiance of 1 kW·m⁻²
- Intermittent: Solar energy can only be harvested when the sun is shining
- Unequally distributed:

 Optimal areas for harvesting solar energy are near the equator away from population centers

10% conversion to a usable form of energy in an area 126 ×126 km² could have supply all the energy needs n the United States

Concentrating solar irradiation

Trough Solar concentrations of < 100 suns

Tower Solar concentrations of 500 – 2500 suns with secondary Receiver Heliostats

Dish Solar concentrations of 5000 – 10,000 suns

Maximum work potential extraction

$$\eta_{overall,ideal} = \eta_{absorption} \eta_{Exergy} = \underbrace{ \left(1 - \frac{\sigma T^4}{I_{DN}C} \right)}_{\frac{\dot{Q}_{solar} - \dot{Q}_{re-radiation}}{Q_{solar}}} \cdot \underbrace{ \left(1 - \frac{T_{ambient}}{T} \right)}_{theoretical work potential from heat (exergy)}$$

$$\eta_{\text{overall,ideal}} = 0 \longrightarrow T_{\text{stagnation}} = \left(\frac{I_{DN}C}{\sigma}\right)^{0.25}$$

$$\begin{split} &\frac{\partial \eta_{overall,ideal}}{\partial T_{optimal}} \!=\! 0 \\ &0 \!\to\! \left(T_{optimal}\right)^5 \!-\! 3/4T_{ambient}\! \left(T_{optimal}\right)^4 \!-\! \left(\frac{T_{ambient}I_{DN}C}{4\sigma}\right) \!=\! 0 \end{split}$$

С	1000 suns	5000 suns	10000
			suns
T _{stagnation}	2049 K	3064 K	3644 K
$T_{optimum}$	1106 K	1507 K	1724 K

nuclear ideal thermochemical cycles

Sensible thermal energy storage media molten salts

Advantages

- ❖ Relatively inexpensive
- High energy density
- Low vapor pressures
- Discharges at constant conditions

Disadvantages

- ❖ High melting points (~200 °C Solar Salt)
- Low thermal conductivites
- Relatively low temperatures of stability (~585 °C Solar Salt)
- Relatively hard to pump and corrosive

Thermal and thermochemical energy storage with particles

Advantages

- Directly irradiated
- Low-cost, abundant media (e.g. sand, casting media)
- Higher operating temperatures/ efficiency
- Existing bulk transport, storage technologies
- Various receiver configurations available

Sensible thermal energy storage media

- ❖ High thermal capacitance
- High solar absorptance
- Enhanced heat transfer due to small particles

Thermochemical storage media

- Increased energy power densities
- Maintains higher temperatures during the exothermal release of heat

Solar thermochemical heat storage concept for integration into an Air Brayton cycle

Solar thermochemical energy storage via a two-step solar thermochemical cycle for integration in an Air Brayton cycle based off of redox-active materials:

$$MO_{x-\delta} + \frac{\delta}{2}O_2 \square MO_X + \Delta h$$

- Enables heat storage in both a chemical and sensible form
- The added chemical storage increases the energy densities of the material to better account for intermittency of sunlight

Design constraints for solar receiver

Redox-active materials development

Cation substitution to "tune" MIEC materials for

- Increased redox capacitance and reaction enthalpy
- Faster kinetics from increased oxygen mobility
- Optimized thermodynamics
- CAM28 particles

Thermochemical reactor development

Thermochemical reactors must also be designed for

- Optimal absorption of concentrated solar irradiation
- Specific solar concentrating facilities
- Redox-active materials and residence times

5 kW_{th} Solar Thermochemical Inclined Granular-Flow Reactor (STInGR)

- Thermochemical energy storage of solar energy within a dense, granular flow of reactive particles
- Aluminosilicate insulated cavity inserted within steel, cylindrical vacuum chamber
- Reactor sealed using steel flanges, hopper / collector cylindrical assemblies, quartz window
- Incident irradiation introduced through quartz window using HFSS, concentrated on 40 mm diameter aperture
- Residence time controlled by variable inclination angle, mass flow rate, slope roughness
- Reactor capable of receiving various granular media, specifically tuned for CaAl_{0.2} Mn_{0.8} O_{3-δ}

Granular flow theory

- Bulk transport influenced by competing time scales
 - Inter-particle contact time versus $\left(\frac{\partial u}{\partial z}\right)^{-1}$
- Bulk transport sensitive to development of small population of long-lived contacts
 - Electrostatic forces
 - Cohesion
 - Particle shape, size interactions
 - Soft particles
 - Temperature effects (e.g., particle softening, agglomeration, thermophoresis)

Jagged shapes susceptible to long-lived contacts

Spherical shapes susceptible to binary particle interactions

Experimental results from solar reactor

- ❖ Severe agglomeration of CAM28 powders observed to occur at *T* > 900 °C.
- Agglomeration observed at similar temperatures for highdensity spray-dried calcium manganites with common impurities used in chemical looping combustion.
- Common impurities of spraydried calcium manganites observed in XRD analysis of materials.

Agglomerates from as viewed by optical microscopy (left) and along the slope (right)

Peak intensities from X-ray diffraction for (top) Coorstek particles cycled repeatedly through the 5 kWth reactor during high flux solar simulator experimentation and (bottom) for potential phase impurities Ca₂MnO₄, CaMn₂O₄, and CaAl_{0.2}Mn_{0.8}O_{2.5} samples

Experimental performance

- ❖ Severe agglomeration avoided if \bar{T} < 875 °C.
- *Replicated steady state experiments performed with $\dot{Q}_{\rm HFSS}$ = 2.7 kW_{th} with HFSS lamps 2-6.
- ❖ \bar{T}_{outlet} = 830 850 °C, $\Delta \delta_{\text{outlet}}$ = 0.012, η_{th} = 0.785
- $riangleq \eta_{
 m th}$ greater than anticipated due to lower T and higher $\dot{m}_{
 m CAM28}$

Characterization of scattering phase function setup/measurements

- Three Axis Automated Scatterometer (TAAS)
- Requires particle-KBr pellet
- ❖ Laser wavelength: 635 nm
- Pellet fabrication parameters
- ❖ 13 mm diameter, ~ 7 ton load compaction, no vacuum, powder pulverized

Fabrication of the KBr pellet with particles: (left) a mixture of KBr powder and ID50 particles; (middle) the 1% by weight KBr-particle pellet after compression; (right) a pure KBr pellet for reference

- ❖ Bi-directional Transmittance Distribution Function (BTDF)
- Preliminary results indicate strong forward scattering normal to pellet
- Similar pattern observed for both pellets, uniform decrease due to particles

BTDF of pellets composed of pure KBr powder (red) and KBr-particle mixtures of 1 wt% particles (blue) Georgia

Characterization of mechanical properties up to 800 °C

Developed a program to determine particle size distributions and roundness

Modified a vacuum chamber coupled to a high-speed camera to measure coefficient of restitution

Developing protocols with impulse Excitation tests to determine modulus of elasticity and Poisson's ratio

Developing a slip-stick apparatus to measure static and dynamic coefficients of friction

Conclusions and summary

- ❖ Particulate (granular) flows are excellent solar thermal energy storage media for reaching elevated temperatures and higher solar-to-electric efficiencies
- *Redox-active particles for thermochemical energy storage media increase the overall power densities of the materials and allow for long-term storage
- ❖ Material properties need to be accurately characterized to design the next generation of particle heating receivers/reactors

Outlook

How does the future look?

Acknowledgements

- Funding from the Solar Energy Technologies Office: DE-EE0008372 with project oversight provided by Drs. Matthew Bauer and Andru Prescod (SETO)
- Funding: U.S. Department of Energy SunSHOT initiative under Award No. DE-FOA-0000805-1541 (PROMOTES project in ELEMENTS) with project oversight from Levi Irwin (SETO)
- National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903
- Graduate Research Assistants: Malavika Bagepalli, H. Evan Bush, Chuyang Chen, Robert Gill, Alexander Muroyama, Andrew Schrader, Garrett Schieber, and Justin Yarrington
- Collaborators:
 - ❖ Georgia Tech: Devesh Ranjan, Zhuomin Zhang, Sheldon Jeter
 - ❖ Arizona State University: James Miller, Ellen Stechel, Nathan Johnson
 - ❖ Kind Saud University: Hany Al-Ansary
 - Sandia National Laboratories: Andrea Ambrosini, Sean Babiniec, Cliff Ho, and James Miller