Mechanical/Thermal Energy Storage & Recovery – A Case for High Performance Turbomachinery Design

2020 Thermal, Mechanical, and Chemical Energy Storage (**TMCES**) Workshop 2/4/2020

Louis M. Larosiliere Elliott Group

Message

- Turbomachines and turbomachinery systems are a key element in many energy storage schemes, and improvements in their performance and functionality have a direct link to techno-economic viability.
- A wide array of turbomachinery aero/mechanical arrangements can potentially enable practical realization of various energy storage thermodynamic cycles.
- Leveraging systems-level integrated thermodynamic cycle optimization coupled with turbomachinery topological design synthesis methods and practices from turbomachinery OEMs, may lead to significant advancements.
- Energy storage R&D programs should not only focus on "off-the-shelf" turbomachinery components, but also motivate the development of novel and improved turbomachinery architectures for maximum system benefit.

And the wheel keeps turning - innovative turbomachinery designs matter to a reduced-carbon energy supply chain!

Backdrop: Energy Storage & Turbomachinery Performance

Variety of Grid-Scale Storage Solutions:

Off-the-shelf or "Clean Sheet" Turbomachinery?

Energy Storage Affordability: Balancing the techno-economics of power density, efficiency, and reliability...

Turbomachinery Centric Mechanical/Thermal Energy Storage

"Power cycles split into charging & discharging processes"

Basic Principle of Adiabatic CAES: Example of "Split" Brayton Cycle

Idealized Cavern Pressure Variation Profile Over an Operational Cycle

CAES Thermodynamic Optimization:

Importance of Turbomachinery Performance

Energy Recovery Efficiency:

Idealized Analysis Japikse & Di Bella, 2018

$$E.R.E. = \frac{\Sigma \dot{W}_{out} \, \Delta Time_{discharging}}{\Sigma \dot{W}_{in} \Delta Time_{charging} + \dot{Q}_{reheat} \, \Delta Time_{discharging}}$$
 where:
$$\dot{W}_{in} = \dot{W}_{net \; compressor} + \dot{Q}_{auxiliary \; heat \; input} \; f$$

$$0 \leq f \leq 1, \quad f = fraction \; of \; time \; thet \; Auxiliary \; Reheater \; is \; used$$

$$R_c = \frac{(T_3 - T_{1,ambient})}{(T_2 - T_{1,ambient})}$$
 $Rr = \frac{(T_R - T_3)}{(T_2 - T_3)}$

$$E.R.E._{net} = \frac{T_R}{T_{ambient}} \frac{B \, \eta_{turbine} \, \eta_{compressor}}{A \, [1 + Rr - Rr \, Rc]}$$

$$A = (Pr, compressor)^{\left(\frac{k-1}{k}\right)} - 1 \qquad B = 1 - \left(\frac{1}{Pr, turbine}\right)^{\left(\frac{k-1}{k}\right)}$$

Why High Efficiency Turbomachinery?

Energy Recovery Efficiency (ERE):

- Ideal air
- No system pressure drop
- No external heating $(T_R / T_3 = 1)$

$$ERE = \left\{1 + R_c \frac{A}{\eta_c}\right\} \frac{B}{A} \eta_c \eta_t$$
 Thermal Mechanical Enhancement Storage Efficiency
$$If \ R_c = \eta_c \,, \ ERE = \eta_c \eta_t = R_c \eta_t$$

- For turbomachinery polytropic efficiency, η_p ≥ R_c, ERE is nearly independent of storage pressure.
- For compressor exit energy recovery effectiveness, R_c = 0.6, ERE decreases with storage pressure.
- High stored pressure can adversely impact compressor offdesign matching and performance

Design Storage Pressure Impacts Cavern Volume, Turbomachinery Arrangement, and Capital Cost

* Kartsounes and Kim, 1978, Argonne National Lab

Some Turbomachinery Design & Development Challenges for TMCES

- System Performance (efficiency) & Operability (variability)
 - Efficient & flexible architectures, including blading shape
 - Off-design performance matching & flow range
- Cyclic Operation
 - Startups & shutdowns
 - Fatigue life
 - Rotary inertia
- High Pressures and Temperatures
 - Materials
 - Clearances, seals, and bearings
 - Thrust management
 - Rotor assembly
 - Equipment protection in hostile environment
- Hostile Environment
 - Internal
 - External
 - Freezing concerns in expander

These challenges are shared by OEMs across various turbomachinery applications sectors!

Zones of Applicability for Typical Industrial Compressor Types*

*Copied from Wygant et al., Asia Turbomachinery & Pump Symposium 2016

Turbine/Expander Options

- Typical off-the-shelf turbine options for CAES or high-pressure applications:
 - Two modules on single spool: HPT & LPT
 - HPT modified from axial steam turbine design
 - LPT from a conventional power generation gas turbine engine
- Incremental technology upgrade
 - Integrally Geared Multi-stage Radial Inflow Expander

Elliott Steam Turbine

Turbomachinery Design Practice in Support of Energy Storage System Development

Turbomachinery Design Phases

(from discovery to mastery of a particular solution)

Similarity Considerations for Compressor Design, Selection & Performance **Correlation**

Specified Design Operating Conditions

- Pressure rise or polytropic head, h_n
- Suction volume flow rate, Q_0
- Gas suction speed of sound & kinematic viscosity, a_0 , v_0
- Impeller mean diameter, D_{2m}
- Impeller structural material specific strength, σ/ρ_s
- Rotor shaft speed, Ω

Generalized Dimensionless Specific Speed,
$$\mathbf{n}_i = \frac{\Omega Q_0^{0.5}}{(v_i)^{1.5}}$$

 v_i is a set of effective velocities, expressed in terms of specified operating conditions, linked to certain forces which determine the action (kinematic & dynamic) of the machine. For example:

$$v_{\sigma} = (\sigma/\rho_s)^{0.5}$$
; $v_s = (h_p)^{0.5}$

A Few Dimensionless Turbomachinery Operating Conditions:

Basic Specific Speed,
$$n_{\scriptscriptstyle S}=\frac{a\,Q_0^{0.5}}{h_p^{0.75}}$$
 Specific Diameter, $d_{\scriptscriptstyle S}=\frac{p_{2m}\,h_p^{0.25}}{Q_0^{0.5}}$ Stress Specific Speed, $n_{\scriptscriptstyle G}=\frac{a\,Q_0^{0.5}}{(\sigma/\rho_{\scriptscriptstyle S})^{0.75}}$

Viscocity Specific Speed,
$$n_{
m v}=rac{ n \, Q_0^{0.5}}{(\Omega {
m v_0})^{0.75}}$$

Viscocity Specific Speed,
$$n_{\nu} = \frac{n \, Q_0^{0.5}}{(\Omega v_0)^{0.75}}$$
 Compressibility Specific Speed, $n_a = \frac{n \, Q_0^{0.5}}{a_0^{0.5}}$

Broad Statement of the Design Problem

Stage design process can be <u>mathematically characterized</u> as:

$$F_i$$
 $(p_1, p_2, p_j, ...p_m)$

Physical Functional Relation

Dimensionless Design Parameters

 p_j is a set of dimensionless <u>geometric</u>, <u>kinematic</u>, <u>and dynamic design parameters</u> Since m > l, certain "design choices" need to be made in order to close this underdetermined system.

F_i is a set of functional relationships between a desired set of design parameters, as dictated by physical balancing principles:

 $R_F(W_F, G(X : p_j)) = 0$ - Model Representation of Fluid Dynamics Constraint $R_S(W_S, G(X : p_j)) = 0$ - Model Representation of Structural Dynamics Constraint $G(X : p_j)$ is the domain boundary geometric shape with geometric coordinates X and flow/structural states W_F & W_S

 $G(X : p_j)$ can be parameterized in terms of the geometric subset of p_j $W_F \& W_s$ are linked to kinematic and dynamic subset of p_i

Determine the set of design parameters and associated geometric shape such that the desired set of design operating conditions is achieved...

Geometric Shaping is the Beginning & End of Turbomachinery Design:

Digital Geometry & Morphing Between Different Body Shapes

Integer Representation of Geometry as Opposed to Traditional NURBS/BREP Construct

Shapes

- Morphing is based on parametric part representation and can be used as the main process in a solution to the design problem
- Three main step:
 - Blade Shape Genomic Mapping
 - Blade Shape Re-parenting
 - Adaptation of Technological Features

The Compressor Selection Chart: Cordier Diagram as Solution to a Particular Phase of the Design Problem

Connecting Thermodynamic Cycle with Turbomachinery Design Selection

Overall Compressor Basic Specific Speed

$$N_s = \left(\frac{1}{\eta_p}\right)^{1/2} \qquad \left\{\frac{v_s}{H_p^{5/2}}\right\}^{1/2} \qquad \left(\Omega\sqrt{P_{sh}}\right)$$
 Expected Overall Performance Specified Gas & Driver Requirements for Given Application Cycle Conditions

 v_s – Suction Specific Volume; P_{sh} – Overall Required Shaft Power; H_p – Overall Polytropic Head

Connecting Overall Specific Speed to Individual Stage Specific Speed:

$$\frac{N_s}{n_s} = \left(\frac{Q_s}{Q_0}\right)^{1/2} \left(\frac{h_p}{H_p}\right)^{3/4}$$
 Stage count, $nstage_{inc} = \left(\frac{n_{sinc}}{N_s}\right)^{4/3}$

 Q_0 - Individual Stage Suction Volume Flow; h_p - Individual Stage Polytropic Head

Analogy Between Hypothetical Incompressible & Actual Compressible Multistage Machine

Well Anchored Design & Simulation Technologies Have Contributed Towards High-Performing Centrifugal Compressors

Efficient High Flow and High Pressure Ratio Compression System: Hybrid Architecture: Axial & Mixed-Flow

Improved Design Practice Enables Higher Stage Loadings without Penalizing Performance

Integration of Wave Rotor in CAES – Synergies with Industrial Steam Turbine

Storage Tank

Wave Rotor* (WR): Pressure Exchanger

*Courtesy of D. Paxon, NASA Glenn

Back to Message

- Turbomachinery performance and cost can play a major role in the practical realization of various energy storage technologies.
- Compelling evidence and reason were given for seeking out novel turbomachinery arrangements and achieving as high a turbomachinery efficiency as potentially available, taking full advantage of current computational simulation tools (involving AI) and advanced manufacturing techniques.
- Plenty of challenges remain. Multidisciplinary system-level thinking, along with careful appropriation of existing turbomachinery engineering know-how (coupled to emerging design methods) should light the path forward...

Thanks for listening!

