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• Turbomachines and turbomachinery systems are a key element in many 
energy storage schemes, and improvements in their performance and 
functionality have a direct link to techno-economic viability.

• A wide array of turbomachinery aero/mechanical arrangements can 
potentially enable practical realization of various energy storage 
thermodynamic cycles.

• Leveraging systems-level integrated thermodynamic cycle optimization 
coupled with turbomachinery topological design synthesis methods and 
practices from turbomachinery OEMs, may lead to significant 
advancements.

• Energy storage R&D programs should not only focus on “off-the-shelf” 
turbomachinery components, but also motivate the development of novel 
and improved turbomachinery architectures for maximum system benefit.

And the wheel keeps turning - innovative turbomachinery designs matter to a

reduced-carbon energy supply chain!

Message
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Backdrop:

Energy Storage & 

Turbomachinery Performance
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Rated Power

Variety of Grid-Scale Storage Solutions:
Off-the-shelf or “Clean Sheet” Turbomachinery? 

Turbomachinery Centric 

BESS – Battery Energy Storage System

ETES – Electro-Thermal Energy Storage

MOSAS – Molten Salt Energy Storage

Energy Storage Affordability: Balancing the techno-economics of power density, 

efficiency, and reliability…  
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Energy

• For a chosen Energy Carrier, Turbomachinery 

Technology and Thermodynamic Optimization of 

Charging & Discharging processes are key elements.

• Figures of merit:

- High power density

- High storage efficiency

- Affordability Pneumatic Battery Analogue of Electric Battery 

“Power cycles split into charging & discharging processes”
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Basic Principle of Adiabatic CAES:

Example of “Split” Brayton Cycle 

Idealized Cavern Pressure Variation Profile Over an Operational Cycle
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CAES Thermodynamic Optimization: 
Importance of Turbomachinery Performance

Idealized Analysis 

Japikse & Di Bella, 2018

Energy Recovery 

Efficiency:

Highest Temp, TR
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Why High Efficiency Turbomachinery?

• For turbomachinery polytropic 

efficiency, ηp ≥ Rc, ERE is nearly 

independent of storage pressure.

• For compressor exit energy 

recovery effectiveness, Rc = 0.6, 

ERE decreases with storage 

pressure.

• High stored pressure can 

adversely impact compressor off-

design matching and performance

Energy Recovery Efficiency (ERE):

• Ideal air 

• No system pressure drop

• No external heating (TR / T3 = 1)

𝐸𝑅𝐸 = 1 + 𝑅𝑐
𝐴
η𝑐

𝐵

𝐴
η𝑐η𝑡

If Rc = ηc , 𝐸𝑅𝐸 = η𝑐η𝑡 = 𝑅𝑐η𝑡

Mechanical 

Storage Efficiency
Thermal 

Enhancement
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* Kartsounes and Kim, 1978, Argonne National Lab

Design Storage Pressure Impacts Cavern 

Volume, Turbomachinery Arrangement, and 

Capital Cost
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• System Performance (efficiency) & Operability (variability)
- Efficient & flexible architectures, including blading shape

- Off-design performance matching & flow range

• Cyclic Operation 
- Startups & shutdowns

- Fatigue life

- Rotary inertia

• High Pressures and Temperatures
- Materials

- Clearances, seals, and bearings

- Thrust management

- Rotor assembly

- Equipment protection in hostile environment

• Hostile Environment
- Internal

- External

- Freezing concerns in expander

Some Turbomachinery Design & 

Development Challenges for TMCES

These challenges are shared by OEMs across various turbomachinery applications sectors! 
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*Copied from Wygant et al., Asia Turbomachinery & Pump Symposium 2016

Zones of Applicability for Typical 

Industrial Compressor Types* 

Typical Large-Scale 

CAES/LAES

Possible Use for 

Distributed Power Storage
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• Typical off-the-shelf turbine options for CAES or high-pressure applications:

- Two modules on single spool: HPT & LPT

• HPT modified from axial steam turbine design

• LPT from a conventional power generation gas turbine engine

• Incremental technology upgrade

- Integrally Geared Multi-stage Radial Inflow Expander

Highview Power Storage
Elliott Steam Turbine

Turbine/Expander Options

Multi-stage 

Radial Inflow
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Turbomachinery Design 

Practice in Support of Energy 

Storage System Development
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Design Synthesis:

Configuration & Architecture

Design Intent & Performance Potential

Development Risks

Life Cycle Costs

Design Development:

Optimization – “Commercial Optimum”

Functional Verification

Risk Mitigation Tactics

Prototype Manufacturing

Technology Portfolio Business Intelligence
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Turbomachinery Design Phases
(from discovery to mastery of a particular solution)
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Specified Design Operating Conditions

• Pressure rise or polytropic head, 𝒉𝒑
• Suction volume flow rate, 𝑸𝟎

• Gas suction speed of sound & kinematic viscosity, 𝒂𝟎, ν𝟎
• Impeller mean diameter, 𝑫𝟐𝒎

• Impeller structural material specific strength, 𝝈/𝝆𝒔
• Rotor shaft speed, 𝛀

A Few Dimensionless Turbomachinery Operating Conditions:

Basic Specific Speed, 𝑛𝑠 =
𝜴 𝑸𝟎

𝟎.𝟓

𝒉𝒑
𝟎.𝟕𝟓 Specific Diameter, 𝑑𝑠 =

𝑫𝟐𝒎 𝒉𝒑
𝟎.𝟐𝟓

𝑸𝟎
𝟎.𝟓

Compressibility Specific Speed, 𝑛𝑎 =
𝜴 𝑸𝟎

𝟎.𝟓

𝒂𝟎
𝟏.𝟓Viscocity Specific Speed, 𝑛ν =

𝜴 𝑸𝟎
𝟎.𝟓

(𝛀ν𝟎 )
𝟎.𝟕𝟓

Stress Specific Speed, 𝑛σ =
𝜴 𝑸𝟎

𝟎.𝟓

(𝝈/𝝆𝒔)
𝟎.𝟕𝟓

Similarity Considerations for Compressor 

Design, Selection & Performance 

Correlation

𝐆𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞𝐝 𝐃𝐢𝐦𝐞𝐧𝐬𝐢𝐨𝐧𝐥𝐞𝐬𝐬 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐒𝐩𝐞𝐞𝐝, 𝐧𝑖 =
𝜴 𝑸𝟎

𝟎.𝟓

(𝒗𝒊 )
𝟏.𝟓

𝒗𝒊 is a set of effective velocities, expressed in terms of specified operating conditions, linked to certain 

forces which determine the action (kinematic & dynamic) of the machine. For example:

𝒗σ = (𝝈/𝝆𝒔)
𝟎.𝟓 ; 𝒗𝒔 = (𝒉𝒑)

𝟎.𝟓
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ni =         Fi (p1, p2,pj,…pm )

pj is a set of dimensionless geometric, kinematic, and dynamic design parameters

Since m > I, certain “design choices” need to be made in order to close this underdetermined system.

Stage design process can be mathematically characterized as:

Fi is a set of functional relationships between a desired set of design parameters, as 

dictated by physical balancing principles:

RF (WF, G(X : pj)) = 0   - Model Representation of Fluid Dynamics Constraint

RS (WS, G(X : pj)) = 0   - Model Representation of Structural Dynamics Constraint

G(X : pj) is the domain boundary geometric shape with geometric coordinates X and 

flow/structural states WF & WS

Broad Statement of the Design Problem

G(X : pj) can be parameterized in terms of the geometric subset of pj

WF & Ws are linked to kinematic and dynamic subset of pj

Dimensionless 

Operating Conditions

Physical Functional 

Relation

i = 1, 2, …,I ; m > I

Dimensionless Design 

Parameters

Determine  the set of design parameters and associated geometric shape such 

that the desired set of design operating conditions is achieved…
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Geometric Shaping is the Beginning & 

End of Turbomachinery Design:
Digital Geometry & Morphing Between Different Body Shapes
Integer Representation of Geometry as Opposed to Traditional NURBS/BREP Construct

Geometric Morphing Process

G(X,t:pj)

Sphere to Cube

Shapes
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 Morphing is based on parametric part 

representation and can be used as the main 

process in a solution to the design problem

 Three main step:

 Blade Shape Genomic Mapping

 Blade Shape Re-parenting

 Adaptation of Technological Features
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Radial 

Mixed-Flow

The Compressor Selection Chart:
Cordier Diagram as Solution to a Particular Phase of the 

Design Problem
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Overall Compressor Basic Specific Speed

𝑵𝒔 =
𝟏

𝜼𝒑

1/2         
𝒗𝒔

𝑯𝒑
𝟓/𝟐

1/2        

𝜴 𝑷𝒔𝒉

Expected Overall 

Performance

Specified Gas & 

Thermodynamic 

Cycle Conditions

Driver Requirements 

for Given Application

𝒗𝒔 – Suction Specific Volume;  𝑷𝒔𝒉 – Overall Required Shaft Power; 𝑯𝒑 – Overall Polytropic Head  

𝑵𝒔

𝒏𝒔

= 
𝑸𝑺

𝑸𝟎

1/2
𝒉𝒑
𝑯𝒑

3/4

Connecting Overall Specific Speed to Individual Stage Specific Speed:

𝑸𝟎 – Individual Stage Suction Volume Flow; h𝒑 – Individual Stage Polytropic Head  

Connecting Thermodynamic Cycle with 

Turbomachinery Design Selection

𝑺𝒕𝒂𝒈𝒆 𝒄𝒐𝒖𝒏𝒕, 𝒏𝒔𝒕𝒂𝒈𝒆
, 𝒊𝒏𝒄

=
𝒏𝒔,𝒊𝒏𝒄

𝑵𝒔

4/3
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Analogy Between Hypothetical Incompressible & 

Actual Compressible Multistage Machine

𝒏𝒔𝒕𝒂𝒈𝒆, 𝒊𝒏𝒄
=

𝒏𝒔,𝒊𝒏𝒄

𝑵𝒔

4/3

𝒏𝒔𝒕𝒂𝒈𝒆 = 𝒏𝒔𝒕𝒂𝒈𝒆, 𝒊𝒏𝒄
𝟎׬
𝟏
(
𝑸𝒔

𝑸𝟎

)𝟐/𝟑(
𝒏𝒔

𝒏𝒔,𝒊𝒏𝒄

)𝟒/𝟑𝒅𝒙

Stage count for equivalent pump 

with constant specific speed

𝑫𝟐𝒎 = 𝒅𝒔
𝒏𝒔𝑸𝟎

𝜴

1/3

Variation of Impeller Average Diameter

Compressor 

Stage Count

Equivalent 

Pump Stage 

Count
Compressibility 

Correction 

Δx = x Δn

ds from Cordier line given ns
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Well Anchored Design & Simulation Technologies Have Contributed 

Towards High-Performing Centrifugal Compressors

URANS Simulation of Stage Performance

Calibration of Predictions with Test

Significant Stage Performance Evolution
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Efficient High Flow and High Pressure 

Ratio Compression System: Hybrid 

Architecture: Axial & Mixed-Flow

Transonic Axial Stage 

Mixed-Flow Impeller

Radial Diffuser/Return 

Channel

Potential use of 

High Surface 

Area for Cooling
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23

Blade design for efficient 

transonic operation

Reducing stage count by almost 50% without sacrificing performance and operability!

Improved Design Practice Enables Higher Stage 

Loadings without Penalizing Performance
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Storage 

Tank

M/GC T

WR

TESWave Rotor* (WR): Pressure Exchanger

Integration of Wave Rotor in CAES –

Synergies with Industrial Steam Turbine

*Courtesy of  D. Paxon, NASA Glenn

WR as  “Effective” Reservoir 

Pressure Topping
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• Turbomachinery performance and cost can play a major role in the practical 

realization of various energy storage technologies.

• Compelling evidence and reason were given for seeking out novel turbomachinery 

arrangements and achieving as high a turbomachinery efficiency as potentially 

available, taking full advantage of current computational simulation tools (involving AI) 

and advanced manufacturing techniques.

• Plenty of challenges remain. Multidisciplinary system-level thinking, along with careful  

appropriation of existing turbomachinery engineering know-how (coupled to emerging 

design methods) should light the path forward…

Back to Message
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Thanks for listening!


