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Message

- Turbomachines and turbomachinery systems are a key element in many
energy storage schemes, and improvements in their performance and
functionality have a direct link to techno-economic viability.

« A wide array of turbomachinery aero/mechanical arrangements can
potentially enable practical realization of various energy storage
thermodynamic cycles.

» Leveraging systems-level integrated thermodynamic cycle optimization
coupled with turbomachinery topological design synthesis methods and
practices from turbomachinery OEMs, may lead to significant
advancements.

« Energy storage R&D programs should not only focus on “off-the-shelf”
turbomachinery components, but also motivate the development of novel
and improved turbomachinery architectures for maximum system benefit.

And the wheel keeps turning - innovative turbomachinery designs matter to a
reduced-carbon energy supply chain!
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Backdrop:
Energy Storage &
Turbomachinery Performance
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Variety of Grid-Scale Storage Solutions:
Off-the-shelf or “Clean Sheet” Turbomachinery?
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Energy Storage Affordability: Balancing the techno-economics of power density,
efficiency, and reliability...
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Turbomachinery Centric
Mechanical/Thermal Energy Storage

“Power cycles split into charging & discharging processes”

Demand
Energy

Discharging
process

Energy
Source
Charging
e Stored
Energy
Energy Carrier
« For a chosen Energy Carrier, Turbomachinery
Technology and Thermodynamic Optimization of
Charging & Discharging processes are key elements.
« Figures of merit:
- High power density \ }
- High storage efficiency Y
- Affordability Pneumatic Battery Analogue of Electric Battery
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Basic Principle of Adiabatic CAES:
Example of “Split” Brayton Cycle
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CAES Thermodynamic Optimization:

Importance of Turbomachinery Performance

Highest Temp, T

T1,ambient s

Energy Recovery
Efficiency:

(T3 - Tl ambient) —
. . R, = ———omnent. o (TR TS)
Idealized Analysis (T2 = Th.ambient) Br="7,=7,)

Japikse & Di Bella, 2018

TR B TNturbine lcompressor
Tambient A [1 + Rr — Rr RC]

E.RE et =

A= (Pr,compressor)("v) -1  B=1- (1) (54

Pr, turbine
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Why High Efficiency Turbomachinery?

Energy Recovery Efficiency (ERE):
Ideal air

No system pressure drop

No external heating (T / T3 =1)

ERE = {1+ RC%}Encnt

A
Thermal Mechanical
Enhancement Storage Efficiency

If R.=n., ERE = n.n: = R,

Energy Recovery Efficiency Trends for CAES Cycle:

Tamb = 20 C; Ideal air (k= 1.4); Compressor Exit Thermal Energy Recovery Effectiveness, Rc =0.9

* For turbomachinery polytropic
efficiency, n, 2 R, ERE is nearly
independent of storage pressure.

« For compressor exit energy
recovery effectiveness, R, = 0.6,
ERE decreases with storage
pressure.

* High stored pressure can
adversely impact compressor off-
design matching and performance
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Design Storage Pressure Impacts Cavern
Volume, Turbomachinery Arrangement, and
Capital Cost
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* Kartsounes and Kim, 1978, Argonne National Lab
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Some Turbomachinery Design &
Development Challenges for TMCES

« System Performance (efficiency) & Operability (variability)
- Efficient & flexible architectures, including blading shape
- Off-design performance matching & flow range
* Cyclic Operation
- Startups & shutdowns
- Fatigue life
- Rotary inertia
« High Pressures and Temperatures
- Materials
- Clearances, seals, and bearings
- Thrust management
- Rotor assembly
- Equipment protection in hostile environment
* Hostile Environment
- Internal
- External
- Freezing concerns in expander

These challenges are shared by OEMs across various turbomachinery applications sectors!
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Discharge Pressure (bar)
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Zones of Applicability for Typical

Industrial Compressor Types*®
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. Typical Large-Scale
: CAES/LAES

Possible Use for ‘
- Distributed Power Storage. -’
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*Copied from Wygant et al., Asia Turbomachinery & Pump Symposium 2016

4
!J The world turns to Elliott



Turbine/Expander Options

« Typical off-the-shelf turbine options for CAES or high-pressure applications:
- Two modules on single spool: HPT & LPT
« HPT modified from axial steam turbine design
« LPT from a conventional power generation gas turbine engine
* Incremental technology upgrade
- Integrally Geared Multi-stage Radial Inflow Expander

Highview Power Storage

Elliott Steam Turbine

Multi-stage
Radial Inflow
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Turbomachinery Design
Practice in Support of Energy
Storage System Development
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Turbomachinery Design Phases
(from discovery to mastery of a particular solution)

Specmcatlons _ _
\ / Business Intelligence

Design Synthesis:
v'Configuration & Architecture

v'Design Intent & Performance Potential
v'Development Risks
v'Life Cycle Costs

[

-
4

Design Development:
v Optimization — “Commercial Optimum”
v'Functional Verification
v'Risk Mitigation Tactics
v'Prototype Manufacturing
v
. Design Validation

Soft Computing: Discovery

Hard Computing: Mastery
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Similarity Considerations for Compressor
Design, Selection & Performance
Correlation

Specified Design Operating Conditions

 Pressure rise or polytropic head, h,

« Suction volume flow rate, Q,

« Gas suction speed of sound & kinematic viscosity, ag, vg
* Impeller mean diameter, D,,,

» Impeller structural material specific strength, a/p,

* Rotor shaft speed, Q

Generalized Dimensionless Specific Speed, n; = ——

v; Is a set of effective velocities, expressed in terms of specified operating conditions, linked to certain
forces which determine the action (kinematic & dynamic) of the machine. For example:

Vo = (a/ps)O's Vs = (hp)()'s
A Few Dimensionless Turbomachinery Operating Conditions:

. . 2 Q%5 e D2 h925 . 2 QY5
Basic Specific Speed, n; = —575  Specific Diameter, d; = — 53—  Stress Specific Speed, n, = —2=
hy Qo (a/ps)™
2 QY>3 285

Viscocity Specific Speed, n, =
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Compressibility Specific Speed, n, =

1.5
(QVO )0.75 ay




Broad Statement of the Design Problem

Stage design process can be mathematically characterized as:

n; = F (P, P2,P}s---Prm)
Dimensionless Physical Functional Dimensionless Design
Operating Conditions Relation Parameters

1=1,2, .., ;m>]|

p; is a set of dimensionless geometric, kinematic, and dynamic design parameters
Since m > [, certain “design choices” need to be made in order to close this underdetermined system.

F, is a set of functional relationships between a desired set of design parameters, as
dictated by physical balancing principles:

Re (W G(X: pj)) =0 - Model Representation of Fluid Dynamics Constraint

Rs (Ws, G(X: p;)) =0 - Model Representation of Structural Dynamics Constraint
G(X': p;) is the domain boundary geometric shape with geometric coordinates X and
flow/structural states Wg & Wy

G(X : p;) can be parameterized in terms of the geometric subset of p,
W & Wi are linked to kinematic and dynamic subset of p;

Determine the set of design parameters and associated geometric shape such
that the desired set of design operating conditions is achieved...
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Geometric Shaping is the Beginning &

End of Turbomachinery Design:
Digital Geometry & Morphing Between Different Body Shapes

Integer Representation of Geometry as Opposed to Traditional NURBS/BREP Construct

Sphere to Cube
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Geometric Morphing Process | -L _.- ..- ..-

G(X,t: pj) Shapes

= Morphing is based on parametric part
representation and can be used as the main
process in a solution to the design problem
= Three main step:
+ Blade Shape Genomic Mapping
+ Blade Shape Re-parenting
s Adaptation of Technological Features
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The Compressor Selection Chart:

Cordier Diagram as Solution to a Particular Phase of the
Design Problem

Cordier Diagram for Centrifugal Compressor Stages in Multistage Process Applications
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Connecting Thermodynamic Cycle with
Turbomachinery Design Selection

Overall Compressor Basic Specific Speed
1 v 1/2
N, = (n_) e} (@VPy)
P P

\_Y_)\Y}\Y}

Expected Overall Specified Gas & Driver Requirements
Performance Thermodynamic for Given Application
Cycle Conditions

1/2

v, — Suction Specific Volume; Pg, — Overall Required Shaft Power; H,, — Overall Polytropic Head

Connecting Overall Specific Speed to Individual Stage Specific Speed:

N, _ (05)1/2(22)3/4 . 4/3
n,  \o, H Stage count, nstage, inc — ( ™ )

S

Q, — Individual Stage Suction Volume Flow; h,, — Individual Stage Polytropic Head
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Analogy Between Hypothetical Incompressible &
Actual Compressible Multistage Machine
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Computational Simulation

Technologies

Well Anchored Design & Simulation Technologies Have Contributed

Towards High-Performing Centrifugal Compressors

LES

Multi-Blade Row

Unsteady RANS CFD

Multi-Blade Row
Steady RANS CFD

Single Blade-Row
3D RANS CFD

Q3D
Throughflow

Meanline

Simple Analytical Geometry NURBS/CAD/CAM

Calibration of Predictions with Test

FLOW

v

—o~Test Data
——Rating Estim ate(25M)

A Full model Unsteady CFD

Significant Opportunity for
Future Design Improvements

>

Geometric Design Technologies ‘

0

0.050

URANS Simulation of Stage Performance

FLOW

Automatic Digital Geometry Cloning
Optimization with Al & AM
0.95

A

Significant Stage Performance Evolution

0.9 S fadiE S p— - -d
7 — - -
035 7 -D Impeller & Is -\
| 3-D Aerodynamics I
/ /7 —\‘\-‘ .y

/A

o \

0.7

Peak Stage Polytropic Efficiency, n, ma

0.65

~8-Test Data

— Rt ing Estim ate(25M)

A Full model Unsteady CFD

............ 06

NIy

4 Projected Ultimate
== Competitor Claims: 2000s to early 2010s
® YNES3: 2017 GR1 Seal Rig Test
s 19905 to early 2000s: Current Elliot Entitlement
— 19808
19708
19505 to mid 1960s

0.1

0.15 0.2 0.25

Suction Flow Coeff. at Peak Efficiency, @, ger

4
J The world turns to Elliott




Efficient High Flow and High Pressure
Ratio Compression System: Hybrid
Architecture: Axial & Mixed-Flow

Radial Diffuser/Return
Channel

Mixed-Flow Impeller |

J

Potential use of
High Surface
Area for Cooling

Transonic Axial Stage
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Improved Design Practice Enables Higher Stage
Loadings without Penalizing Performance

Similar Re, Specific Flow, and Stall Margin
Waschka et. al., ISABE-2005-1266 “Judicious Combination of Geometry and Vector Diagram”

General Electric
0.94 Energy Efficient Engine — Advanced
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o is average solidity
\is average blade aspect ratio
«;, IS average stage inlet swirl angle

Blade design for efficient
transonic operation

=

Reducing stage count by almost 50% without sacrificing performance and operability!
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Integration of Wave Rotor in CAES —
Synergies with Industrial Steam Turbine

Cavern pressure variation

WR as “Effective” Reservoir
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Shock wave generated by dosure of outflow

s Nosning i *Courtesy of D. Paxon, NASA Glenn
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Back to Message

« Turbomachinery performance and cost can play a major role in the practical
realization of various energy storage technologies.

« Compelling evidence and reason were given for seeking out novel turbomachinery
arrangements and achieving as high a turbomachinery efficiency as potentially
available, taking full advantage of current computational simulation tools (involving Al)
and advanced manufacturing techniques.

« Plenty of challenges remain. Multidisciplinary system-level thinking, along with careful
appropriation of existing turbomachinery engineering know-how (coupled to emerging
design methods) should light the path forward...
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Thanks for listening!
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