Presented at the 2020 Thermal-Mechanical-Chemical Energy Storage (TMCES) Workshop, February 4, 2020, Pittsburgh, PA

High-Temperature Falling Particle Receiver with Thermal Storage

PRESENTED BY

Clifford K. Ho

Sandia National Laboratories, Albuquerque, NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA0003525.

SAND2020-1206 PE

Concentrating Solar Power and Thermal Energy Storage

Concentrating solar power uses mirrors to concentrate the sun's energy onto a receiver to provide heat to spin a turbine/generator to

produce electricity

Hot fluid can be stored as thermal energy efficiently and inexpensively for ondemand electricity production when the sun is not shining

High Temperature Falling Particle Receiver (DOE SunShot Award FY13 – FY16)

Goal: Achieve higher temperatures, higher efficiencies, and lower costs

4 Prototype System Design

Particle Storage Tank Design

Small-scale hot-storage funnel-flow testing in a furnace

- Electric heating
- High-temperature particle storage
 - Minimal heat loss
 - Minimal erosion
- Dispatchable heat or electricity production

Questions?

Cliff Ho, (505) 844-2384, ckho@sandia.gov