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Transport and Reaction Engineering for Sustainable Energy
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Transport + chemical phenomena Solar-Fuel Reactors & Advanced Heat Exchangers

Radiative transport + heat- and mass-transfer +
cyclic reactions in a solar thermochemical reactor
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Next-Gen Innovations for Thermal Energy Storage

Technologies
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Gur, I., Sawyer, K. & Prasher, R. Searching for a Better Thermal Battery.
Science 335, 1454-1455 (2012)



We have to consider multiscale heat and mass transfer in

Thermal Energy Storage Systems

Consider a thermochemical solar
reactor to store energy in chemical
bonds as an example

Overall Reactor/System Performance

Heat exchanger

Insulation

Component Heat and Mass Transfer

Cavity

Reactive element Heat exchanger
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Challenge #1.:

Materials Discovery for Thermochemical Storage
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Challenge 2a: Predicting Heat- and Mass-Transfer Behavior

Fluidized beds of solid particles provide the Large variations in predicted heat-transfer coefficients
benefit of “fluid-like” behavior to enhance heat- (and correlations) especially at higher temperatures

and mass-transfer Sand 90-212 pm (d,, = 129 pm)
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Simulation results from Bala Chandran’s group
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Challenge 2b: Taking into Account Radiative Heat Transfer

Ray-tracing simulations in
particulate media

Neural network models for metallic

Gen3 CSP Technologies: T > 700 C
packed beds

Solid volume fraction: 0.52%

1¥ (Hidden) Layer

2™ (Output) Layer

= 0
0 10 T T "
parice “orid L _ Independent
e N2~ Scattering Theory
i 10°" 1
_ N PN

PN Q
0 \ i S \i‘ Heat O
\ P \ \,\ P Rejection C 2
EaS < AN ) @ 10° ~ 3 3 g
L s = = "2

& \ NG > ] =
co! ~ Heliostats ‘ g 3
gar Qart;cle P 10°
e Exchancer b Bk @ Singh and Kaviany

CO’ﬂD!GS’SOr H
Thermal Storage o 1074} 1
5y5ten1 ‘ I ..........................................
Random Bed/ Yo=[eDLIJ = /1(“ Yo Y, =/ (\\ Y,)
Mehos, M. et al. Concentrating Solar Power Gen3 10°° : :

Demonstration Roadmap. (2017)

2 3 4 5
Optical thickness, 7

6

Kang, H. H., Kaya, M. & Hajimirza, S. J. Quant. Spectrosc.
Radiat. Transf. 226, 66—72 (2019)

o Radiative heat-transfer -> intrinsically 3-D, spectral and highly non-linear T-dependence, hard to
obtain material properties
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o System-scale reduced order models are needed to account for radiative transport
o Methodologies to marry physics-based models with data-driven approaches



Challenge 3: Achieving tunability with thermal switches

Recent work from Dames et al., at UC Berkeley to use
shape memory alloys for passive thermal management

for Li-ion batteries

Heat source (battery)

SMA wire actuator Gap size D~ 0.5 mm
at Tie (held open by bias
Heat sink (coolant plate) springs, not shown)

/!ao, M., Li, J., Park, S., Moura, S. & Dames, C.. Nat. Energy 3,
899-906 (2018)
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o Can the thermal energy storage systems self-

regulate, based on temperature for how quickly
they charge and discharge?

Tunable thermal energy storage could improve
utilization efficiency

o PCMs in buildings are inactive for more
than 50% of the time

Concepts have existed for decades but for niche
applications — spaceships and cryogenic systems

Issues: Low switching ratio, large footprint, high
cost and poor cyclability



Challenge 4: Heat Exchanger Design and Modeling

3-D printed HX could allow for geometries
precluded by conventional manufacturing

Cross-media metal
fiber fin heat
exchangers via multi-
media 3D printing
approach.

Optimized 3D heat
transfer surfaces in
printed composite
(polymer + metal
filler) heat
exchangers.

Continuous Fiber
Composite Fins

Water

olymer Water
Channels

Printed part (unfilled ABS)

Stark & Klausner, Joule, 2017

3D model

Beyond steady-state heat-transfer models
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Summary of Research Questions & Needs

1. Accelerated Materials Discovery, Development 3. Tunability in thermal energy storage systems

and Stability Testing e Lack of practically viable spatio-temporal
» Strategies to incorporate reaction kinetics control for TES
* Corrosivity, toxicity and stability issues * Quantification of where and when to deliver
heat
2. Predictions for Heat and Mass Transfer * Achieving improvements in switching ratio
Performance * Low-cost compact designs
e Complex challenges for multiphase flows * |mproved stability and cyclability
* High-fidelity computational heat and mass
transfer predictions 4. Advanced heat exchanger design and model
 Experimental validation for predicted data development
 Reduced-order models for device-scale * Reimagine heat exchanger design with
performance predictions computational tools for topology
optimization
TREE/\L,AF  Dynamic models for HX performance
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