Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles

Jacob Delimont Southwest Research Institute

Adam Steinberg, Ben Emmerson Georgia Tech

> Paul Hsu, Keith Rein Spectral Energies

Work supported by US DOE under DE-FE002401

11/7/2019

Outline

- Background
- Project Objectives
- Combustor Design
- Optical Diagnostics
- Future Work

11/7/2019

Why sCO2 Power Cycles?

- Offer +3 to +5 percentage points over supercritical steam for indirect fossil applications
- High fluid densities lead to compact turbomachinery
- Efficient cycles require significant recuperation

11/7/2019

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006

2019 University Turbine Systems Research Workshop

3

What is Direct Fired Oxy-Fuel Combustion?

- Replace indirect heat source in a sCO2 power cycle
- Oxygen + fuel + CO2
- CO2 and water produced by the combustion separated
- ASU to produce oxygen

4

Why Direct Fired Oxy-Fuel Combustion?

- Capture 99% of carbon dioxide
- Higher turbine inlet
 temperatures possible

11/7/2019

Limiting component is the recuperator, not the heater

Project Objectives

- Design a 1 MW thermal oxy-fuel combustor capable of generating 1200°C outlet temperature
- Manufacture combustor, assemble test loop, and commission oxy-fuel combustor
- Evaluate and characterize combustor performance
 - Optical access for advanced diagnostics

6

Programmatic Changes in 2019

- Major cost sharing partner no long participating in project
- Much of 2019 has been spent in resolution of this and programmatic changes involved with changing cost share providers
- Path forward with same level of funding has been identified and submitted to DOE for approval
- This has caused a significant project delay

Outline

- Background
- Project Objectives
- Combustor Design
- Optical Diagnostics
- Future Work

Combustor Design

- Mechanical casing
- Fluid flow path
- Fuel injector
- Oxygen injection
- Combustor liner thermal management
- Optical access
- Instrumentation
- Design for additive manufacturing

9

Conceptual Combustor Design

Computational Modeling

Goals

- Rapid solution times
- Iterate on geometry
- Inform liner thermal model
- Reduce risks in a variety of areas prior to combustor manufacturing

11/7/2019

Modeling

- RANS simulations by SwRI
- Relatively course mesh
- Variety of reduced chemical mechanisms

Simplified Combustor Geometry

Effusion CO₂: 0.4875 kg/s @700°C

CO₂: 0.325 kg/s @575°C kg/s @200°C

O2: 0.08 kg/s @ 575°C

CH4: 0.02

 Modelled effusion cooling on combustor head and liner between head and dilution holes

Dilution slots

11/7/2019

2019 University Turbine Systems Research Workshop

Dilution CO₂: 0.7127 kg/s @700°C

200 bar

Operating Pressure

Effusion Type Boundary Condition

- Effusion boundary condition created by mass source in first near wall element
- Energy source also used to make fluid injection temperature

Results from Simple Simulation

- Fairly strong recirculation zone
- High temperature near walls
 - Adiabatic wall boundary conditions
 - Additional cooling

Additional Considerations

- Typical combustor pressure drops of ~2% result in significant ΔP across the combustor liner at 200bar
 - This may result in need for a more robust mechanical design
- Carbon Monoxide production is a concern
 - Insuring good quality mixing, while maintaining relatively low pressure drop dictates longer residence times

Carbon Monoxide Production

- Possible to mitigate with excess oxygen
- Increase mixing, typically requires more pressure drop
- Longer combustor residence time

11/7/2019

2019 University Turbine Systems Research Workshop

Acoustic Modeling

- Acoustic modeling using CFD flow field
- Modeling shows modes that might be excited
- Modeling conducted to insure sufficient space was available to install dampers for most likely frequencies
- Combustor design has a fairly large amount of damping, which will most likely suppress the acoustic modes

11/7/2019

Mode #	Frequency	Description
1	420 Hz	1 st longitudinal shroud mode
2	530 Hz	Helmholtz (bulk) combustor mode
3	1,600 Hz	Mixed longitudinal-transverse shroud mode
4	1,600 Hz	1 st Longitudinal (1L) combustor mode
5	2,200 Hz	Mixed longitudinal-transverse shroud mode
6	2,500 Hz	Coupled shroud-combustor mode
7	2,600 Hz	Mixed longitudinal-transverse shroud mode
8	2,900 Hz	Mixed longitudinal-transverse shroud mode
9	3,100 Hz	1R shroud (1 st radial shroud mode)
10	3200 Hz	Mixed shroud mode
11	3,300 Hz	Mixed shroud mode
12	3,400 Hz	Coupled shroud-combustor mode
13	3,400 Hz	Mixed shroud mode
14	3,500 Hz	Coupled shroud-combustor mode
15	4,000 Hz	Longitudinal shroud mode
16	4,000 Hz	Mixed (1L1T) combustor mode

Outline

- Background
- Project Objectives
- Combustor Design
- Optical Diagnostics
- Future Work

Optical Diagnostics Effort

- Observe combustion process in an effort to generate validation data
- Explore validity of traditional diagnostic techniques in a high pressure CO₂ environment
- Challenges with optical measurements direct-fired combustor with sCO₂
 - Optical probe design for 200bar pressure and high temperature
 - CO_2^* emissions
 - $-CO_2$ absorptivity

Optical Test Plan

- Plan developed to allow flexibility depending on the spectral conditions encountered
- Hyperspectral imaging
- OH* measurements

11/7/2019

- CH* will also be considered
- Wide range of optical filters will be available during testing to allow for flexibility

OH* measurements

- No experimental data available at the time for OH*
- Broadband CO₂* emissions and thermal emissions may pose a problem for the OH*
- Modeling of OH* emissions in CO₂ was inconclusive

Left: Emission spectra from OH* at 50 and 970 bar in supercritical 70/30 watermethane mixture at 470°C [1]. No significant optical interference from other species was observed in the experimental data. Right: Modeled OH* emission spectra at 50 and 970 bar.

[1] G. M. Poshner and E. U. Franck, "Spectra and Temperature of Diffusion Flames at High Pressures to 1000 bar," Bunsenges Chem. Phys., vol. 98, pp. 1082-1090, 1994.

2019 University Turbine Systems Research Workshop

Optical Probe Design

 Existing Spectral Energies design was modified by Spectral and SwRI to accommodate higher pressures and temperatures

11/7/2019

2019 University Turbine Systems Research Workshop

Outline

- Background
- Project Objectives
- Combustor Design
- Optical Diagnostics
- Future Work

Topics in Need of Additional Study

- Nitrogen will be present in any oxygen stream from an ASU
 - How does the presence of N_2 alter the combustion?
 - Do we need to worry about NO_x ?
- Formation of soot and CO in combustion process
- Light off: How to manage this? Light off at lower pressure -> CO2 inventory management
- Part load operation: System level thermodynamic studies to look at reduced mass flow, reduced pressure, and/or reduced firing temperature

Next Steps

- Place major component orders
- Assemble test loop
- Assemble combustor
- Instrumentation and DAQ
- Commissioning End 2020, Early 2021
- Test Campaign 2021

11/7/2019

QUESTIONS?

11/7/2019

2019 University Turbine Systems Research Workshop

