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Overarching objectives

• Objective 1:
Develop and demonstrate a low-loss fully axial injection concept, 
taking advantage of stratification effects to alter the detonation 
structure and position the wave favorably within the combustor

• Objective 2:
Obtain stability and operability characteristics of an RDE at fixed and 
transient operating conditions, and determine performance rules for 
full-scale operations

• Objective 3:
Develop quantitative metrics for performance gain, as well as 
quantitative description of the loss mechanisms through a 
combination of diagnostics development, reduced-order modeling, 
and detailed simulations
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Expected outcomes: RDE physics advancements

• Outcome 1:
A comprehensive study of the stability and operability of high AAR 
designs under engine-relevant conditions:
– Air inlet design is critical to limit losses and manage secondary effects; 

– Generally limits operability of devices.

• Outcome 2:
A low-loss inlet design with optimal placement of detonation wave 
to promote efficiency gain:
– Needs to be coupled to optimal design of

• Fuel/air stratification

• Detonation channel shape

• Exit nozzle shape
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Expected outcomes: RDE methods advancements

• Outcome 3:
Methods for estimating effective pressure gain realized
– Basis is measurements, reduced-fidelity models, and laser diagnostics.

– A Bayesian optimization framework to combine experimental data, simulations 
and reduced-fidelity models to design practical RDEs

• Outcome 4:
A suite of computational tools for modeling full-scale RDEs, 
including an AI-based acceleration for long duration simulations
– Based on classification-learning approach, with automatic model reduction from 

high fidelity simulation

– Implementation into U-M solvers

– Transfer of detonation computational models to industry
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Expected outcomes: RDE technology advancement

• Outcome 5:
Demonstration of efficiency improvement (gain) using a 12-in 
methane/syngas mixture RDE
– Ultimate goal of the program

– Based on cumulative progress under DOE UTSR program

– Achieved through balancing and management of loss mechanisms

– CFD aided optimization of current designs
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ADVANCING PHYSICAL UNDERSTANDING SOURCES OF GAIN AND LOSS
&

INVESTIGATING REALIAZABLE GAIN IN FIXED AND TRANSIENT CONDITIONS

Objectives and tasks 
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OPERATION & PERFORMANCE

METHODS 
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B. Project organization and structure

Organizational chart

An organizational chart of the project is shown in Fig. 1. The project is organized in 4 Tasks, each
with several subtasks, which are described in the Statement of Project Objectives (SOPO). Task
1 objective is the project management and planning, while Tasks 2 through 4 are technical tasks.
The work is organized following the technical tasks presented in the SOPO to readily monitor
technical progress and to ensure to successfully meeting the technical objectives.

Pressure Gain, Stability, and Operability of Methane/Syngas 
Based RDEs Under Steady and Transient Conditions

Objective 1
Low-loss injector based RDEs for 

methane/syngas operation at elevated 
pressure/temperature

Task 2.2
Injector design for minimizing 

parasitic/commensal combustion

Task 2.1
Effect of stratification/fuel composition 

on detonation structure

Objective 2
Stability and operability characteristics 

of RDEs at fixed and transient 
conditions

Task 3.2
Stability of system to perturbations in 
boundary and/or operating conditions

Task 3.1
Operating map of RDEs and transition 
between different operating conditions

Objective 3
Develop tools for quantitative 

diagnostics, estimation of 
performance, and design optimization

Task 4.2
Imaging-based quantification of RDE 

losses

Task 4.1
Development of validated quantitative 

tools for estimating pressure gain 
based on measurements

Task 3.3
Develop design rules for operability 
and stability for integrated systems

Task 4.3
Development of AI-based accelerated 

models for long term computations

Task 2.3
Develop design rules for performance

and scalability

Task 4.4
Development of CFD-based design 

tool using Bayesian optimization

Figure 1: Work structure for the project.

Roles and responsibilities of participants

Prof. Mirko Gamba (UM) will be the sole PI of the project. He will be responsible for the overall
direction and performance of this project. He will maintain communication with the members of
the research team and the technical and administrative point of contact of the agency. He will be
responsible for preparing the reports, disseminating the results of the research, and maintaining
interactions with industrial and lab personnel. He will also supervise the activities to ensure that
all technical, schedule and budget objective and requirements are met. From a scientific stand-
point, he will be responsible for the development and execution of the experimental activities.
Gamba and his team will operate the various main experimental configurations (round and race-
track RDEs), develop and apply the various diagnostics proposed in this study for the study of
gain and losses, the dynamics under fixed or transient operation, and for the design of the low
loss air inlet to be developed as part of this study. Gamba will direct graduate students who will
carry out the laboratory work. Gamba and his experimental team will contribute to tasks 2, 3 and
will develop subtasks 4.1 and 4.2.

Prof. Venkat Raman (UM) will be responsible for the computational activities. He will direct
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Physics of RDEs and current challenges
• Prior work has identified non-ideal

behaviors that alter the operation of RDEs
– Secondary combustion is a dominant 

phenomena, controlling the structure,
dynamics and properties of the detonation;
• Need and can be managed.

– Secondary waves exist, and can affect the
propagation of the primary detonation wave
• Non-linear coupling with deflagration and detonation

• Need and can be managed

– Non-uniform mixing may not be a limiting factor
• On the contrary, stratification can serve to stabilize wave

– Response of air inlet / fuel injector is key, but can
be managed by tuning relative responses

• Based on what learnt so far:
– Develop new inlet / injector configurations that

provide strong detonation, minimizes deflagration
and secondary waves;
• End goal: raise the understanding of the device and TRL

– Focus is on understanding the impact of losses on achieving gain 9
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o Gain, where art thou?



Phenomenological model to guide design selection
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Application of model to understanding impact of 
various losses and design conditions

Geometry 1 
Operating condition A
Assumes parameter set B 

Geometry 2 
Operating condition A
Assumes parameter set B  



Such a model can allow us to evaluate designs
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Geometry 1

Geometry 3

Fixed operating condition

Slower wave

Faster wave

Better performance?

Worse performance?

Geometry 2
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Progress in Modeling
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Figure 6.16: Supersonic wrinkled flame structure.

Figure 6.17: (Left) Time-averaged isocontours of Y (OH) = 0.01 (red) and Y (H2) = 0.1
(blue). (Middle) Isocontour of U = 0 (green) added. (Right) Isocontour of arbitrary pressure
gradient (yellow) highlighting expansion wave front.

The e↵ect of the horseshoe on radical H spatial distribution is an important di↵erence

with the simpler ramjet-like configuration presented in Sec. 6.2. Indeed, H is created as

the cold H2 emanating from the jet recirculates upstream. Inside this pocket, H2 can partly

relax and dissociate. This permits to seed the shear layer with radical H and start up the

first chain-branching reaction earlier than in ramjet mode. A marginal concentration of H

from dissociation is enough to initiate the chain-reactions F1 and F2, which will then form

all the radicals H, O and OH needed.

6.3.2.2 Flame wrinkling and burning pockets

In Fig. 6.1, large-scale eddies form in the shear layer. Their size depends on the jet

Strouhal number [4], hence on its characteristic frequency. These eddies form flame “wrin-
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Is This All There is To Modeling?

• Modeling has focused on ever-increasing complexity to improve accuracy

➡ Faster computers mean more complicated models

➡ Does not necessarily decrease total compute cost

➡ May not be all that accurate either!

• Can we re-imagine modeling?

➡ What is the purpose of computational models?

➡ Do we need models only for design?

• How can models overcome time-to-solution limitation?
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Purpose of Models

• Acceleration of modeling for gas turbine applications

• Models for real-time prediction

• Models for augmenting experiments
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Pre-exascale Machine - SUMMIT

5

200 Pflops

GPU-Centric Design 

90% of compute power on GPUs 



What can SUMMIT do? 
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4000 Cores on NASA 200 GPUs on Summit 50 GPUs on Summit
GPU Conversion Code Optimization

SUMMIT has 27,000 GPUS!



Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AI-based Acceleration

• Use machine learning to minimize cost of chemistry computations
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100-1000X Speedup



AI For Improving Detonation-Driven Gas Turbine Technology

DOE Summit — 200 PetaFLOP Machine UTSR Funded Detonation Engine

• First Full Scale Simulation of RDEs with Axial Injection 
•Capable of simulating 100-1000 cycles in 1 day

Machine Learning Applied to Combustion Modeling  
(1000X Speed up Potential)

UM-GE-NETL 
Collaboration



Digital Twins

• Virtual machine

➡ Consists of layers of descriptors

- Descriptor enables particular input-output relation
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Application: Flame Transition

• Swirl-stabilized premixed combustor

• Experimental dataset:

➡ Fuel: 60% CH4 and 40% CO2.

➡ Equivalence ratio: 0.60

➡ Preheat temperature: 400 K.

➡ Air flow rate: 400 SLPM. 

• Time-resolved 2D measurements

➡ OH-PLIF, PIV

➡ Total time: 1.5 sec at 10 kHz 

• Objective: Predict flame transition using data

10Dataset courtesy of Q. An (U. Toronto), A. Steinberg (Ga. Tech.)
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Application: Flame Transition

11Dataset courtesy of Q. An (U. Toronto), A. Steinberg (Ga. Tech.)
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Probabilistic Forecasting 

• Probabilistic forecasting  
 
 
 
 
 

• Approximate transport of probability density function (PDF) of 
the observables

➡ Keep the forecasting affordable for real-time applications
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Clustered Reduced Order Model
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Generating Data

• Can data be constructed by training?

14

Easy to 
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Network architecture
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Fully convolutional network

Downsampling phase Upsampling phase
Reduces dimensionality  

of PLIF image
Decodes reduced PLIF image 

into PIV image

Input is 
PLIF field 
in one box

Output is 
PIV field in 
same box

Recall encoding problem: 



Velocity field in time
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PIV-x PIV-y PIV-z

Truth

Global CNN

Local CNN

m/s

m/s

m/s



Comparison with OH-PLIF Data
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End Goal

• We want to build J.A.R.V.I.S
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Planned Activities
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• AI-based simulation of RDEs

➡ 6 hour turnaround time for 100 cycles

➡ Ability to execute on in-house clusters

• Design using multi-fidelity tools  

➡ Reduced-order models using high-fidelity simulations

➡ Design cycle tools for optimization

• Data assimilation from experiments

➡ Can we use canonical experiments to generate full scale experimental data?

➡ Where does this transferability come from/break?
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Questions?


