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Overarching objectives

e Objective 1:
Develop and demonstrate a low-loss fully axial injection concept,
taking advantage of stratification effects to alter the detonation
structure and position the wave favorably within the combustor

e Objective 2:
Obtain stability and operability characteristics of an RDE at fixed and
transient operating conditions, and determine performance rules for
full-scale operations

e Objective 3:
Develop quantitative metrics for performance gain, as well as
guantitative description of the loss mechanisms through a
combination of diagnostics development, reduced-order modeling,
and detailed simulations



Expected outcomes: RDE physics advancements

e OQutcome 1:
A comprehensive study of the stability and operability of high AAR
designs under engine-relevant conditions:
— Air inlet design is critical to limit losses and manage secondary effects;
— Generally limits operability of devices.

e OQutcome 2:
A low-loss inlet design with optimal placement of detonation wave
to promote efficiency gain:

— Needs to be coupled to optimal design of

e Fuel/air stratification
e Detonation channel shape
e Exit nozzle shape



Expected outcomes: RDE methods advancements

e OQutcome 3:
Methods for estimating effective pressure gain realized
— Basis is measurements, reduced-fidelity models, and laser diagnostics.

— A Bayesian optimization framework to combine experimental data, simulations
and reduced-fidelity models to design practical RDEs

e Outcome 4:
A suite of computational tools for modeling full-scale RDEs,
including an Al-based acceleration for long duration simulations

—Based on classification-learning approach, with automatic model reduction from
high fidelity simulation

— Implementation into U-M solvers

—Transfer of detonation computational models to industry



Expected outcomes: RDE technology advancement

e Outcome 5:
Demonstration of efficiency improvement (gain) using a 12-in
methane/syngas mixture RDE
— Ultimate goal of the program
—Based on cumulative progress under DOE UTSR program
— Achieved through balancing and management of loss mechanisms
— CFD aided optimization of current designs



Objectives and tasks

Pressure Gain, Stability, and Operability of Methane/Syngas
Based RDEs Under Steady and Transient Conditions
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Objective 1 Objective 2 Objective 3
Low-loss injector based RDEs for Stability and operability characteristics Develop tools for quantitative
methane/syngas operation at elevated of RDEs at fixed and transient diagnostics, estimation of
pressure/temperature conditions performance, and design optimization
Task 2.1 Task 3.1 Task 4.1
Effect of stratification/fuel composition —>| Operating map of RDEs and transition - Development of validated quantitative
on detonation structure between different operating conditions > tools for estimating pressure gain
based on measurements
Task 2.2 Task 3.2
Injector design for minimizing >| Stability of systemto perturbations in Task 4.2
parasitic/commensal combustion boundary and/or operating conditions —>| Imaging-based quantification of RDE
losses
Task 2.3 Task 3.3
Develop design rules for performance Develop design rules for operability Task 4.3
and scalability and stability for integrated systems —>| Development of Al-based accelerated

AIR INLET / FUEL

INJECTOR DESIGN

models for long term computations

Task 4.4
Development of CFD-based design
tool using Bayesian optimization

FIXED AND TRANSIENT

METHODS

OPERATION & PERFORMANCE

DEVELOPMENT

ADVANCING PHYSICAL UNDERSTANDING SOURCES OF GAIN AND LOSS

&

INVESTIGATING REALIAZABLE GAIN IN FIXED AND TRANSIENT CONDITIONS




Physics of RDEs and current challenges

0.4
¢ Prior work has identified non-ideal

behaviors that alter the operation of RDEs
— Secondary combustion is a dominant x/H

phenomena, controlling the structure,
dynamics and properties of the detonation;

e Need and can be managed. 0 -

— Secondary waves exist, and can affect the
propagation of the primary detonation wave

e Non-linear coupling with deflagration and detonation

e Need and can be managed
— Non-uniform mixing may not be a limiting factor

e On the contrary, stratification can serve to stabilize wave
— Response of air inlet / fuel injector is key, but can

be managed by tuning relative responses

e Based on what learnt so far:

— Develop new inlet / injector configurations that
provide strong detonation, minimizes deflagration
and secondary waves;

e End goal: raise the understanding of the device and TRL
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[ Detonation wave ]

[ Secondary waves ]

Injector
dynamics

[ Secondary combustion ]

— Focus is on understanding the impact of losses on achieving gain
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o Gain, where art thou?
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Phenomenological model to guide design selection

Application of model to understanding impact of
various losses and design conditions
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Such a model can allow us to evaluate designs

Fixed operating condition

.-

Worse performance?
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M Is This All There is To Modeling? /4|3C\_

I
MICHIGAN

® Modeling has focused on ever-increasing complexity to improve accuracy
= Faster computers mean more complicated models
= Does not necessarily decrease total compute cost
= May not be all that accurate either!

® Can we re-imagine modeling?

= What is the purpose of computational models?

= Do we need models only for design?

® How can models overcome time-to-solution limitation?



MICHIGAN

® Acceleration of modeling for gas turbine applications

® Models for real-time prediction

® Models for augmenting experiments




M Pre-exascale Machine - SUMMIT /43@_
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GPU-Centric Design

~ g90% of compute power on GPUs
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M What can SUMMIT do? AL

MICHIGAN
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M Al-based Acceleration /43@_
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® Use machine learning to minimize cost of chemistry computations
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M Al For Improving Detonation-Driven Gas Turbine Technology
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DOE Summit — 200 PetaFLOP Machine

UM-GE-NETL

Collaboration

Machine Learning Applied to Combustion Modeling

(1000X Speed up Potential)
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e First Full Scale Simulation of RDEs with Axial Injection
e Capable of simulating 100-1000 cycles in 1 day
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M Digital Twins

UNIVERSITY OF
MICHIGAN

® Virtual machine

= Consists of layers of descriptors

— Descriptor enables particular input-output relation

Input Output

Physical Gas Turbine

Sensor Data

Forecast

I | ROM I Virtual Gas Turbine
) C

ensor Content




M Application: Flame Transition

UNIVERSITY OF
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e Swirl-stabilized premixed combustor 97 mm

¢ Experimental dataset:

114 mm

= Fuel: 60% CH4 and 40% CO2.

= Equivalence ratio: 0.60
= Preheat temperature: 400 K.

= Air flow rate: 400 SLPM.

® Time-resolved 2D measurements
= OH-PLIF, PIV

= Total time: 1.5 sec at 10 kHz

® Objective: Predict flame transition using data 20 0 20 20 0 20

X |mm| X [mm|

Dataset courtesy of Q. An (U. Toronto), A. Steinberg (Ga. Tech.) 10
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M Application: Flame Transition

97 mm
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Dataset courtesy of Q. An (U. Toronto), A. Steinberg (Ga. Tech.) ||
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¢ Probabilistic forecasting

t=T t=T+n

® Approximate transport of probability density function (PDF) of
the observables

= Keep the forecasting attordable for real-time applications



M Clustered Reduced Order Model
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M Generating Data
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Easy to Difficult to
Measure - A, Measure

Only videos
possible




M Network architecture
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Input 1s

PLIF field
1n one box

Fully convolutional network
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Output 1s

PIV field in
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Downsampling phase Upsampling phase

Reduces dimensionality
of PLIF image

Decodes reduced PLIF image
into PIV 1mage

Encoding problem:
P

Recall encoding problem: Px; = CNN(X;; p) =y,

Prediction of y




M Velocity field 1n time
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t = (.0 ms

Global CNN

LLocal CNN




M Comparison with OH-PLIF Data
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M End Goal
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® We want to build J.A.R.V.L.S




IML Planned Activities
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® Al-based simulation of RDEs

= 6 hour turnaround time for 100 cycles
= Ability to execute on in-house clusters
® Design using multi-fidelity tools
= Reduced-order models using high-fidelity simulations
= Design cycle tools for optimization
e Data assimilation from experiments
= Can we use canonical experiments to generate full scale experimental data?

= Where does this transterability come from/break?



Questions?
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