Pulse Detonation Engine for Power Extraction from Oxy-Combustion of Coal-Based Fuels

PI: David L. Blunck Co-PIs: Kyle Niemeyer and Sourabh Apte

Oregon State University

Funding from NETL (FE0025822), Oregon BEST

Acknowledgements

Students: Matthew Zaiger, Derek Bean, Shahank Karra, Rachel Nelke, Peter Beck, Zach Powell, Austin Rose, Matthew Hoeper (Oregon State University), Daiki Ichinokiyama (University of Tsukuba)

Collaborators: Drs. Fred Schauer, John Hoke and team at Air Force Research Laboratory.

Motivation

- Improvements in thermodynamic efficiency of power plants needed
- Pressure gain combustion using detonations can significantly improve efficiency

Richardson, Blunck et al., Combustion and Flame 2016

Motivation

Advantages of detonation-fed MHD: $P \propto \sigma imes V^2 imes B^2$

- High velocities (Ma > 2)
- High temperatures (T > 3000 K) increase electrical conductivity

Key Findings

- 1) Particle seeder developed for unsteady detonations
- 2) Data collected for CH_4 - O_2 detonations
- 3) Electrical conductivity measurements being collected, preliminary results indicate seeding needed
- 4) Ionization chemistry of seed particles reduces detonation speed
- 5) Detonation solver developed for oxygen-fuel combustion
- 6) Residual combustion products suppress detonations

Technical Objectives

Overall Goal

Develop and evaluate a pulse detonation engine system which can be coupled with a MHD system, and analyze MHD and detonation performance.

Specific Objectives:

- 1) Design, build, and operate a pulse detonation engine that operates on gaseous or solid fuels with oxygen.
- 2) Evaluate the operational envelope and performance of the pulse detonation device with both seeded and unseeded flows.
- 3) Develop and use a numerical design tool to calculate the performance of pulse detonation and coupled detonation-MHD systems.

Progression of Research

Experimental Effort

- N₂O and O₂ pulse detonation engines built
- Measured CH₄/O₂ detonation speeds, added coal
- Method for injecting particles developed
- Preliminary electrical conductivity measurements
- Ongoing effort evaluating the influence of residual combustion products

Coupled MHD detonation calculations with coal particles

Development of Pulse Detonation System

January 2018

November 2018

CH₄ – O₂ Detonation Speeds

9

CH₄ – O₂ Detonation Speeds

Injection of Seed

High speed video of particulate injection through seeder

Oxygen and Particle Delivery System

High speed imaging of particle injection

Measuring Electrical Conductivity

 $P \propto \sigma \times V^2 \times B^2$

- Detonation propagates through magnetic field
- Deflection measured by induced current in search coil
- Conductivity evaluated with relationship:

Instrumentation to measure electrical conductivity

Electrical Conductivity Signal

Photodiode Signal

Oxy-methane $\varphi \approx 1$ for all tests

Progression of Research

- 2D simulations of detonation through H₂-O₂
- 1D simulations of hydrocarbon detonations
- 1D ionizing H₂-O₂-KOH model has developed and applied
- Riemann solvers initially updated to account for MHD in1D

Coupled MHD detonation calculations with coal particles

Detonation Solver

 Godonov's finite volume with Conservation Laws Package (CLAWpack) 5.4.0 (Mandli et al, 2016)

$$Q_{i}^{n+1} = Q_{i}^{n} - \frac{\Delta t}{\Delta x} \left(F_{i+\frac{1}{2}}^{n} - F_{i-\frac{1}{2}}^{n} \right)$$

- Riemann approximation with Roe averaging and entropy inclusion
- Kinetics handled by Cantera 2.3.0

Cell Width = 3.2 [mm] Experimental = 2.02 [mm] (Denisov,1960)

CLAWPack DOI:10.5281/zenodo.262111,URL: <u>http://www.clawpack.org</u>

Cantera DOI:10.5281/zenodo.170284,URL: http://www.cantera.org

Governing Eq. for MHD/Detonation

Mass conservation equation:

$$\frac{\partial}{\partial t} \iint_{S} \rho dS = -\int_{l} \rho \boldsymbol{u} \cdot \boldsymbol{n} dl$$

u: Gas Velocity ρ : Density p: Pressure

B: Magnetic Flux Density **J**: Electric Current Density

<u>Momentum conservation equation</u>: E: Total Energy σ : Electrical Conductivity

$$\frac{\partial}{\partial t} \iint_{S} \rho \boldsymbol{u} dS = -\int_{l} \{\rho \boldsymbol{u} (\boldsymbol{u} \cdot \boldsymbol{n}) + p\boldsymbol{n}\} dl + \int_{l} \bar{\tau} \cdot \boldsymbol{n} dl + \iint_{S} \boldsymbol{J} \times \boldsymbol{B} dS$$

Total energy conservation equation:

$$\frac{\partial}{\partial t} \iint_{S} \rho E dS = -\int_{l} (\rho E \boldsymbol{u} \cdot \boldsymbol{n} + p \boldsymbol{u} \cdot \boldsymbol{n}) dl + \int_{l} (\bar{\tau} \cdot \boldsymbol{u}) \cdot \boldsymbol{n} dl + \iint_{S} \left\{ \frac{\boldsymbol{J}^{2}}{\sigma} + \boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) \right\} dS$$

Here, $E = \sum_{s=1}^{N_{sp}} Y_s(h_{298}^{0} + \int_{T'=298 \text{ K}}^{T} c_p^0 \text{d}T') - p/\rho + \frac{1}{2} |\boldsymbol{u}|^2$

Mass conservation equation of Chemical Species:

$$\frac{\partial}{\partial t} \iint_{S} \rho Y_{S} dS = -\int_{l} \rho Y_{S} \boldsymbol{u} \cdot \boldsymbol{n} dl + \iint_{S} \rho \dot{Y}_{S} dS$$
Charge Neutrality Equation $\frac{Y_{e}}{m_{e}} = \sum_{i} \frac{Y_{ion}}{m_{ion}}$

h: Specific Enthalpy Y_s : Mass Concentration \dot{Y}_s : Mass Production Rate c_p : Specific Heat at Constant Pressure

Governing Equations in Electrodynamics

<u>Generalized Ohm's Law</u> $\boldsymbol{j} = \sigma(\boldsymbol{E} + \boldsymbol{u} \times \boldsymbol{B}) - \frac{\beta}{|\boldsymbol{B}|} \boldsymbol{j} \times \boldsymbol{B}$

j: Electric Current Density E: Electric Field

Electrical Conductivity $\sigma = \frac{e^2 n_e}{m_e \sum_{i=1}^{N_{sp}} v_{ei}}$

Hall Parameter $\beta = \frac{e|B|}{m_e \sum_{i=1}^{N_{sp}} v_{ei}}$

Collision Frequency of Electron with Species $v_{ei} = n_i Q_{ei} c_e$

Steady Maxwell Equations

$$\nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot \boldsymbol{j} = \boldsymbol{0}$$

u: Gas Velocity **B**: Magnetic Flux Density

e: Elementary Charge $n_e:$ Electron Number Density $m_e:$ Electron Mass $n_i:$ Species Number Density $Q_{ei}:$ Electron Collision Cross Section with Species $c_e:$ Electron Mean Thermal Speed

Electrical Conductivity

19 Calculated electrical conductivity

Ionization Mechanism

		•			
#	Reaction	Rate coeffic	ients (A	, n, E)	Reference
57	$\mathrm{KO} + \mathrm{CO} = \mathrm{K} + \mathrm{CO}_2$	$1.00 imes 10^{14}$	0.0	0.0	[59]
58	$\mathrm{KO} + \mathrm{HCO} = \mathrm{KOH} + \mathrm{CO}$	$3.00 imes 10^{13}$	0.0	0.0	[45]
59	$\mathrm{KO} + \mathrm{CH}_4 = \mathrm{KOH} + \mathrm{CH}_3$	$1.20 imes 10^{12}$	0.0	14.64	[60]
60	$\rm KO + CH_2O = KOH + HCO$	1.20×10^{13}	0.0	16.74	[45]
61	$\mathrm{KO} + \mathrm{KO} = \mathrm{KO}_2 + \mathrm{K}$	$1.00 imes 10^{13}$	0.0	0.0	[61]
62	$\mathrm{KO} + \mathrm{H} + \mathrm{M}_k = \mathrm{KOH} + \mathrm{M}_k$	$3.60 imes 10^{22}$	-2.0	0.0	[60]
63	$\mathrm{KO} + \mathrm{O} + \mathrm{M}_k = \mathrm{KO}_2 + \mathrm{M}_k$	$1.45 imes 10^{19}$	-1.0	0.0	[60]
64	$\mathrm{KO} + \mathrm{CH}_3 = \mathrm{K} + \mathrm{CH}_3\mathrm{O}$	$2.30 imes 10^{13}$	0.0	25.1	[45]
65	$\mathrm{KO} + \mathrm{C}_2\mathrm{H}_6 = \mathrm{KOH} + \mathrm{C}_2\mathrm{H}_5$	$1.20 imes 10^{13}$	0.0	25.1	[45]
66	$\mathrm{KO} + \mathrm{C}_2\mathrm{H}_4 = \mathrm{KOH} + \mathrm{C}_2\mathrm{H}_3$	1.50×10^{13}	0.0	33.47	[45]
67	$\mathrm{KO} + \mathrm{C}_2\mathrm{H}_2 = \mathrm{KOH} + \mathrm{C}_2\mathrm{H}$	2.00×10^{13}	0.0	37.66	[45]
68	$\mathrm{KO} + \mathrm{C}_3\mathrm{H}_8 = \mathrm{KOH} + \mathrm{C}_3\mathrm{H}_7$	$1.50 imes 10^{13}$	0.0	20.92	[45]
KC	D ₂ reactions				
69	$\mathrm{KO}_2 + \mathrm{H} = \mathrm{KO} + \mathrm{OH}$	$2.21 imes 10^{12}$	0.5	0.0	[50]
70	$\mathrm{KO}_2 + \mathrm{H} = \mathrm{K} + \mathrm{HO}_2$	$1.90 imes 10^{12}$	0.0	0.0	[61]
71	$\mathrm{KO}_2 + \mathrm{H} = \mathrm{KOH} + \mathrm{O}$	$1.00 imes 10^{13}$	0.0	0.0	[61]
72	$\mathrm{KO}_2 + \mathrm{H} = \mathrm{KO} + \mathrm{OH}$	5.00×10^{13}	0.0	29.29	[45]
73	$\mathrm{KO}_2 + \mathrm{O} = \mathrm{KO} + \mathrm{O}_2$	$1.30 imes 10^{13}$	0.0	0.0	[45]
74	$\mathrm{KO}_2 + \mathrm{CO} = \mathrm{KO} + \mathrm{CO}_2$	6.00×10^{13}	0.0	96.23	[60]
75	$\mathrm{KO}_2 + \mathrm{OH} = \mathrm{KOH} + \mathrm{O}_2$	$1.20 imes 10^{13}$	0.0	0.0	[60]
76	$\mathrm{KO}_2 + \mathrm{H}_2 = \mathrm{KOH} + \mathrm{OH}$	$1.80 imes 10^{12}$	0.0	83.14	[60]
77	$\mathrm{KO}_2 + \mathrm{HCO} = \mathrm{KOH} + \mathrm{CO}_2$	$6.00 imes 10^{12}$	0.0	0.0	[60]
78	$\mathrm{KO}_2 + \mathrm{CH}_3 = \mathrm{KOH} + \mathrm{CH}_2\mathrm{O}$	6.00×10^{12}	0.0	0.0	[60]
KC	OH reactions				
79	$\mathrm{KOH} + \mathrm{H} = \mathrm{K} + \mathrm{H_2O}$	2.21×10^{12}	0.5	0.0	[50]
80	$\mathrm{KOH} + \mathrm{CH}_3 = \mathrm{K} + \mathrm{CH}_3\mathrm{OH}$	3.50×10^{12}	0.0	41.84	[45]
81	$\mathrm{KOH} + \mathrm{HO}_2 = \mathrm{KO}_2 + \mathrm{H}_2\mathrm{O}$	$6.00 imes 10^{12}$	0.0	22.18	[60]
82	$\text{KOH} + \text{KOH} = (\text{KOH})_2$	$8.00 imes 10^{13}$	0.0	0.0	[57]
KF	I reactions				
83	$\mathrm{KH} + \mathrm{H} = \mathrm{K} + \mathrm{H}_2$	1.00×10^{14}	0.0	0.0	[56]
84	$\rm KH + O = K + OH$	5.00×10^{13}	0.0	0.0	[56]
85	$\rm KH + O = \rm KO + H$	$6.00 imes 10^{12}$	0.0	29.29	[45]
86	$\mathrm{KH} + \mathrm{OH} = \mathrm{K} + \mathrm{H_2O}$	$1.00 imes 10^{14}$	0.0	0.0	[59]
87	$\mathrm{KH} + \mathrm{OH} = \mathrm{KOH} + \mathrm{H}$	$1.00 imes 10^{13}$	0.0	0.0	[59]

#	Reaction	Rate coefficients (A, n, E)			Reference
88	$\rm KH + HCO = \rm K + \rm CH_2O$	$2.00 imes 10^{13}$	0.0	0.0	[45]
89	$\rm KH + CH_3 = CH_4 + K$	$1.00 imes 10^{14}$	0.0	0.0	[45]
90	$\rm KH + CH_3O = \rm K + CH_3OH$	$2.00 imes 10^{13}$	0.0	0.0	[45]
91	KH + KO = K + KOH	$1.00 imes 10^{14}$	0.0	0.0	[59]
K_2	O reactions				
92	$\mathrm{KO} + \mathrm{K} + \mathrm{M} = \mathrm{K}_2\mathrm{O} + \mathrm{M}$	1.00×10^{16}	0.0	0.0	[45]
93	$K_2O + H = K + KOH$	$5.00 imes 10^{12}$	0.0	12.55	[45]
94	$\mathbf{K}_{2}\mathbf{O}+\mathbf{O}=\mathbf{K}_{2}\mathbf{O}_{2}$	$1.00 imes 10^{14}$	0.0	0.0	[45]
95	$\mathbf{K}_{2}\mathbf{O}+\mathbf{O}=\mathbf{K}\mathbf{O}+\mathbf{K}\mathbf{O}$	$1.00 imes 10^{13}$	0.0	41.84	[45]
96	$K_2O + OH = KO + KOH$	1.00×10^{13}	0.0	20.92	[45]
KO	3 reactions				
97	$\mathrm{KO}_2 + \mathrm{O} + \mathrm{M}_k = \mathrm{KO}_3 + \mathrm{M}_k$	$1.45 imes 10^{19}$	-1.0	0.0	[60]
98	$\rm H + \rm KO_3 = \rm KO_2 + \rm OH$	$2.00 imes 10^{13}$	0.0	0.0	[45]
99	$O + KO_3 = KO_2 + O_2$	$2.00 imes 10^{13}$	0.0	0.0	[45]
100	$\mathrm{OH} + \mathrm{KO}_3 = \mathrm{KO}_2 + \mathrm{HO}_2$	1.00×10^{13}	0.0	37.66	[45]
101	$\mathrm{CH}_3 + \mathrm{KO}_3 = \mathrm{CH}_3\mathrm{O} + \mathrm{KO}_2$	$1.00 imes 10^{13}$	0.0	20.92	[45]
102	$\mathrm{KO} + \mathrm{O}_2 + \mathrm{M}_k = \mathrm{KO}_3 + \mathrm{M}_k$	3.40×10^{14}	0.0	0.0	[45]
KH	CO ₃ , KCO ₃ , K ₂ CO ₃ reactions				
103	$\mathrm{KOH} + \mathrm{CO}_2 + \mathrm{M}_k = \mathrm{KHCO}_3 + \mathrm{M}_k$	4.09×10^{14}	0.0	0.0	[45]
104	$\mathrm{KO} + \mathrm{CO}_2 + \mathrm{M} = \mathrm{KCO}_3 + \mathrm{M}$	$3.90 imes 10^{14}$	0.0	0.0	[45]
105	$\mathrm{KCO}_3 + \mathrm{H} + \mathrm{M}_k = \mathrm{KHCO}_3 + \mathrm{M}_k$	2.00×10^{16}	0.0	0.0	[45]
106	$\mathrm{KO}_2 + \mathrm{CO} + \mathrm{M} = \mathrm{KCO}_3 + \mathrm{M}$	$3.00 imes 10^{16}$	0.0	0.0	[45]
107	$\mathbf{K} + \mathbf{K}\mathbf{C}\mathbf{O}_3 + \mathbf{M}_k = \mathbf{K}_2\mathbf{C}\mathbf{O}_3 + \mathbf{M}_k$	2.00×10^{18}	0.0	0.0	[45]
108	$\mathrm{KHCO}_3 + \mathrm{H} = \mathrm{K} + \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}$	2.70×10^{13}	0.0	29.83	[58]
109	$\mathrm{KHCO}_3 + \mathrm{H} = \mathrm{KCO}_3 + \mathrm{H}_2$	1.50×10^{13}	0.0	41.84	[45]
110	$\mathrm{KHCO}_3 + \mathrm{O} = \mathrm{KCO}_3 + \mathrm{OH}$	$1.00 imes 10^{13}$	0.0	52.3	[45]
111	$\mathrm{KHCO}_3 + \mathrm{OH} = \mathrm{KCO}_3 + \mathrm{H}_2\mathrm{O}$	2.00×10^{13}	0.0	31.38	[45]
112	$\mathrm{KCO}_3 + \mathrm{H} = \mathrm{KOH} + \mathrm{CO}_2$	$3.00 imes 10^{12}$	0.0	16.74	[45]
113	$\mathrm{KCO}_3 + \mathrm{O} = \mathrm{KO}_2 + \mathrm{CO}_2$	5.00×10^{12}	0.0	12.55	[45]
114	$\mathrm{KHCO}_3 + \mathrm{KO} = \mathrm{K}_2\mathrm{CO}_3 + \mathrm{OH}$	6.00×10^{12}	0.0	29.29	[45]
115	$\mathrm{KHCO}_3 + \mathrm{KOH} = \mathrm{K}_2\mathrm{CO}_3 + \mathrm{H}_2\mathrm{O}$	3.00×10^{12}	0.0	37.66	[45]
116	$\mathrm{KCO}_3 + \mathrm{KO} = \mathrm{K}_2\mathrm{CO}_3 + \mathrm{O}$	7.00×10^{12}	0.0	20.92	[45]
117	$\mathrm{KCO}_3 + \mathrm{KO}_2 = \mathrm{K}_2\mathrm{CO}_3 + \mathrm{O}_2$	1.00×10^{13}	0.0	12.55	[45]
118	$K_2CO_3 + M_k = K_2O + CO_2 + M_k$	5.00×10^{16}	0.0	338.9	[45]

Zaiger, 2019 20

Detonation Speeds with 0.01% K₂CO₃

- Up to an 8% decrease in the detonation speed
- Decrease in power

Progression of Research

- Multi-species & multi-step reacting flow CESE solver
- Fully implicit & dual time stepping source term for stiff chemistry
- Oxy-fuel detonation simulation
- 2D solver framework

CH₄–O₂ Detonation: JLR mechanism

- Detonation propagation in CH₄/O₂ mixtures
- Modified JL-R mechanism
 - Chemical kinetics for a multistep, Arrhenius-type chemical reaction for nine species: CH₄, O₂, H₂, CO₂, CO, OH, H, O and H₂O adopted

23

No	Reaction	Reaction Kinetics
1	$CH_4 + 0.5O_2 \longrightarrow CO + 2H_2$	$r_1 = 3.06.10^{11} \exp\left(\frac{-30000}{RT}\right) [CH_4]^{0.5} [O_2]^{1.30}$
2	$CH_4 + H_2O \longrightarrow CO + 3H_2$	$r_2 = 3.84.10^9 \exp\left(\frac{-30000}{RT}\right) [CH_4][H_2O]$
3	$CO + H_2O \Longrightarrow CO_2 + H_2$	$r_3 = 2.01.10^9 \exp\left(\frac{-20000}{RT}\right)$ [CO][H ₂ O]
4	$H_2 + 0.5O_2 \Longrightarrow H_2O$	$r_4 = 8.03.10^{16} T^{-1} \exp\left(\frac{-40000}{RT}\right) [\text{H}_2]^{0.3} [\text{O}_2]^{1.55}$
5	$O_2 \rightleftharpoons 2O$	$r_5 = 1.5.10^9 \exp\left(\frac{-113000}{RT}\right) [O_2]$
6	$H_2O \Longrightarrow H + OH$	$r_6 = 2.3.10^{22} T^{-3} \exp\left(\frac{-120000}{RT}\right) [\text{H}_2\text{O}]$

- Radical dissociation accounted in modified JL-R mechanism
- Critical in appropriately limiting heat release during oxycombustion, thereby predicting detonation temperature and velocity accurately

$CH_4 - O_2$ Detonation ($\Phi = 1$)

Oregon State University

CH₄–O₂ Detonation: Comparison with Experimental Data

Conservation Element Solution Element (CESE) Numerical Method Basics

- Flux conservation over discretized space-time domain – not just along spatial domain as in traditional FV method
- Staggered integration volumes (CE) and solution volumes (SE)
 - Riemann solution not needed
- Genuine multi-dimensional formulation
 - No dimensional/directional splitting necessary
 - Applicable to unstructured grids
- Non-dissipative baseline "a-scheme"
 - Numerical dissipation added as necessary

Vortex in a Box

Hermann, 2005Current 2D CE/SE SolverT=0T=1T=20T=1T=200064x6400<td

27

Evaluation of CESE 2D Solver

Key Findings

$$P \propto \sigma \times V^2 \times B^2$$

- 1) Particle seeder developed for unsteady detonations
- 2) Data collected for CH_4 - O_2 detonations
- 3) Electrical conductivity measurements being collected, preliminary results indicate seeding needed
- 4) Ionization chemistry of seed particles reduces detonation speed
- 5) Detonation solver developed for oxygen-fuel combustion
- 6) Residual combustion products suppress detonations

Future Work

Detonation Initiation Studies

 Effect of driver shock pressure and temperature on detonation initiation was studied to establish operational envelope for CH₄–O₂ detonations

	P _{driver} (atm)	$T_{driver} = 3000$ (K)	$T_{driver} = 250$ (K)	$\begin{array}{c} 0 T_{driver} = 200 \\ (\text{K}) \end{array}$	0
	60	\checkmark	\checkmark	\checkmark	
	45	\checkmark	\checkmark	\checkmark	
	30	\checkmark	\checkmark	\checkmark	
	15	×	×	×	
P _{driver} (atm)	T _{driver} (K)	$L_{driver} = 0.2$ (cm)	$L_{driver} = 0.1$ (cm)	$L_{driver} = 0.05$ (cm)	$L_{driver} = 0.005$ (cm)
60	3000	\checkmark	\checkmark	\checkmark	\checkmark
45	3000	\checkmark	\checkmark	\checkmark	\checkmark

Detonations with Coal

23k frames per second with $0.3 \ \mu s$ integration time

CESE Solver Validation (ZND Detonation)

- ZND Detonation Propagation in a Tube
- Arrhenius-type chemical reaction for two species (reactant & product)

 $Reactant(R) \rightarrow Product(P) + heat release(q)$

- 20cm tube filled with premixed stochiometric H_2/O_2 reactant mixture
- 0.2 cm spark region placed near closed head end to initiate detonation
- Validated against ZND theory and with Wu, 2002

CESE Solver Validation (ZND Detonation)

H_2 -Air and CH_4 – O_2 Detonation comparison

- Temperature higher in CH_4 - O_2 detonation than H_2 -Air detonation
 - Consistent with expectation of oxy-fuel combustion.
 - Higher temperature and high detonation wave velocity should result in more power extraction for MHD unit
- WD scheme over predicts combustion temperature as result of not accounting for dissociation reactions
- At temperatures higher than 2500 K (which are very common in oxy-fuel combustion), the CO-CO₂ equilibrium is in favor of CO

Governing Equations for 1D Reacting Flows

Conservation equations for chemically reacting system involving $\ensuremath{\mathsf{N}_{\mathsf{s}}}$

species

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} = S$$

$$Q = \begin{bmatrix} \rho \\ \rho u \\ \rho e_t \\ C_1 \\ C_2 \\ \vdots \\ C_{N_{s-1}} \end{bmatrix}, E = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho u \left(e_t + \frac{p}{\rho} \right) \\ u C_1 \\ u C_2 \\ \vdots \\ u C_{N_{s-1}} \end{bmatrix}, S = \begin{bmatrix} 0 \\ 0 \\ \omega_1 \\ \omega_2 \\ \vdots \\ \omega_{N_{s-1}} \end{bmatrix}$$
$$e_t = e + \frac{1}{2}u^2$$
$$e_t = e + \frac{1}{2}u^2$$
$$\rho e = \sum_{i=1}^{N_s} C_i \left(\int_{T_{ref}}^T C_{pi} dt + h_{fi}^0 \right) - p$$
$$\dot{\omega}_j = M W_j \sum_{i=1}^{N_s} \left(v_{ij}'' - v_{ij}' \right) \left(k_{fi} \prod_{l=1}^N n_l^{v_{ij}'} - k_{bi} \prod_{l=3}^N n_l^{v_{ij}'} \right)$$

- $\rho = density$
- u = velocity

 $C_i = species mass concentration$

p = pressure

 $\dot{\omega}_i = mass \ production \ rate \ of \ ith$ species per unit volume

 $n_j = molar \ concentration \ of \ species \ j$

 $k_{fi} = forward reaction rate$

 $k_{bi} = backward reaction rate$

 $v_{ij}^{\prime\prime}$ and v_{ij}^{\prime} = stochiometric coefficients

CESE 1D Solver Features

- Solver implements well known a-α numerical scheme
 - To accurately resolve flow discontinuities such a shock waves
- Courant Number insensitive scheme
 - To decrease numerical diffusion at low courant numbers
- Fully-implicit source term implemented
 - Dual time stepping for stiff source terms

H₂-Air Detonation

- Detonation propagation in H₂/Air mixtures
- Chemical kinetics for a global, 1 step reversible, Arrhenius-type chemical reaction for four species: H₂, O₂, N₂ and H₂O adopted

$$2H_2 + O_2 \leftrightarrow 2H_2O$$

 $k_f = A_f \exp\left(\frac{-T_f}{T}\right)$
 $A_f = 1.102 \times 10^{13} \ \frac{1}{sec}, T_f = 8052 \ K$

20cm

H₂-Air Detonation Results

Oxy-Fuel Reduced Kinetics

Westbrook-Dryer (WD)

- Widely used for turbulent flame combustion modeling with air
- No dissociation reactions accounted, hence over predicts adiabatic flame temperature

Jones-Lindstedt revised (JL-R)

• Accounts O₂ dissociation; accurate prediction of adiabatic flame temperature

JL-R Mechanism

- 1) $CH_4 + 0.5 O_2 \rightarrow CO + 2H_2$
- 2) $CH_4 + H_2O \rightarrow CO + 3H_2$
- 3) $CO + H_2O \leftrightarrow CO_2 + H_2$
- 4) $H_2 + 0.5 O_2 \leftrightarrow H_2 O$
- *5)* $0_2 \leftrightarrow 20$

6) $H_2 0 \leftrightarrow H + 0H$

CH₄-O₂ Detonation Results

Use of Coal for Detonations

- Coal abundant resource in United States (and funding specific to its use)
- Prior (limited) research has considered detonations coupled with MHD for gaseous fuels
- Most research investigating coal detonations has focused on safety
- Physical and thermal properties of coal detonations need to be measured to understand coupling with MHD

Anthracite coal, picture courtesy of Wikipedia

Overview of Tasks

Future Work

Experimental

- 1) Transition PDE to operate using oxy-coal
- 2) Measure boundary conditions and velocities for calculations
- 3) Quantify changes in detonation characteristics between solid and gaseous fuels

Computational

- 1) Couple MHD solver with detonation code
- 2) Develop detonation code
- 3) Parametric study of MHD performance for detonations (long-term)

Conductivity analysis

1. Shao Chi Lin, E. L. Resler, and Arthur Kantrowitz. Electrical conductivity of highly ionized argon produced by shock waves. Journal of Applied Physics, 26(1):95–109, 1955.

CE/SE Method: 2D Detonation Example

Distribution of electric potential

Maximum error for an amount of node

ConditionNo Exact
$$\delta = 1 \text{ S/m}$$
 $u_x = -\cos 2\pi x \sin 2\pi y$ Solution $\beta = 2$ $u_y = \cos 2\pi y \sin 2\pi x$ Solution $|B| = 3 \text{ T}$ 52 $\phi = 6$

References (1)

[1] Petrick M, Shumyatsky BY. *Open-cycle magnetohydrodynamic electrical power generation*. Argonne, IL, USA: Argonne National Laboratory; 1978.

[2]

<u>https://engineering.purdue.edu/AAE/Research/ResearchFacilities/PropulsionFacilities/pics/hpl/pde_firing.jpg</u>

- [3] Litchford RJ. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power. NASA/TP-2001-210801, 2001.
- [4] <u>https://commons.wikimedia.org/wiki/File:Det_front_structure.jpg</u>
- [5] Roy GD, Frolov SM, Borisov AA, Netzer DW. *Prog Energy Combust Sci* 30(6):545-672, 2004.
- [6] Ciccarelli G and Dorofeev S, Prog Combust Sci, 34(4): 499-550, 2008.
- [7] <u>http://arc.uta.edu/research/pde.htm</u>
- [8] Bykovskii F, Zhdan S, Vedernikov E, Zholobov Y, Dokl Phys, 55(3):142-144, 2010.
- [9] Kayukawa N. Energy Convers Manage 2000;41:1953–74.
- [10] Cambier J-L, Roth T, Zeineh CF, Karagozian AR. The Pulse Detonation Rocket Induced MHD Ejector (PDRIME) Concept. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2008.

[11] Cambier J-L, Lofftus D. MHD Power Generation From a Pulse Detonation Rocket Engine. 33rd AIAA Plasmadynamics & Lasers Conference, 2002, pp. 49-

[12] Matsumoto M, Murakami T, Okuno Y. IEEJ Trans 2010;5:422–7.

References (2)

- [13] Chang S-C, Wang X-Y, Chow C-Y. J Comput Phys 1999;156:89–136.
- [14] Wu Y, Ma F, Yang V. Int J Comput Fluid Dyn 2004;18:277–87.
- [15] Franklach, M., Wang, H., Goldenburg, M., Smith, G.P., Golden, D.M., Bowman, C.T., Hanson, R.K., Gardiner, W.C. and Lissianski, V. (1995) GRI-Mech – An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion (Gas Research Institute), Technical Report GRI-95/0058.
- [16] Ma F, Choi J-Y, Yang V. J Propul Power 2005;21:512–26.
- [17] Ma F, Choi J-Y, Yang V. J Propul Power 2006;22:1188–203.
- [18] Ma F, Choi J-Y, Yang V. J Propul Power 2008;24:479–90.
- [19] Frassoldati A, Cuoci A, Faravelli T, Ranzi E, Candusso C, Tolazzi D. Simplified kinetic schemes for oxy-fuel combustion. 1st International Conference on Sustainable Fossil Fuels for Future Energy, 2009.
- [20] Zhang M, John Yu ST, Henry Lin SC, Chang S-C, Blankson I. *J Comput Phys* 2006;214:599–617.
- [21] Schulz JC, Gottiparthi KC, Menon S. Shock Waves 2012;22:579–90.

