This material is based upon work supported by the Department of Energy under Award Number DE-FE0031611

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

GE INFORMATION: The information contained in this document shall not be reproduced without the express written consent of GE. If consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction. This presentation and the information herein are provided for information purposes only and are subject to change without notice. NO REPRESENTATION OR WARRANTY IS MADE OR IMPLIED AS TO ITS COMPLETENESS, ACCURACY, OR FITNESS FOR ANY PARTICULAR PURPOSE. All relative statements are with respect to GE technology unless otherwise noted.
Project Objectives & Technical Approach

Overall Objective

Develop a feasible Conceptual Design for Advanced Additive turbine inlet components that enable 65% CC efficiency through analytical methods and feature print trials.

Technical Approach

Phase I – Discovery

• Generate Advanced Wall Architecture and Airfoil Concepts enabled by Additive Manufacturing.
• Identify and evaluate Additive Methods and Materials that enable desired geometry through Coupon Print Trials.
• Down-select a Primary Concept and Additive Method/Material and backup for future evaluation.
• Develop Test Plan for future execution.
Agenda

Additive at GE
Nozzle Design Overview
Airfoil Design & Artifact Coupon Print Trial Summary
Additive Modality Comparison
Proposed Test Plan to address Phase I gaps
Impact of Additive at GE

Performance
- Removes traditional mfg. constraints
- Enables “near surface” cooling

Speed to Market
- Model to part directly
- ~18 month cycle

Cost
- Eliminate casting tooling
- Metal only where needed

Improving state-of-the-art
- Processing sciences
- Alloys
- Design
Advanced Manufacturing Works - Greenville

Merging design and manufacturing technology to deliver better products

Additive
- >10,000 parts shipped
- 1st GT parts produced/fielded

Ceramics
- 1st fielded CMCs
- Thermal coatings

Process optimization
- Automation/CMT/Digital
- Hot Gas Path Special Processes
- Reduced cost and lead time
Industrial Gas Turbine Terminology

See insert on right

Combustion Liner

Transition Piece

1st Stage Turbine Vane (Nozzle)

1st Stage Shroud

1st Stage Turbine Blade

2nd Stage Turbine Vane
Turbine Section Advanced Manufacturing Opportunities

Component we are focusing on in this project
Turbine Vane Conventional Cooling Fundamentals

Internal Cooling Flow Circuit

Surface/External Film Cooling
Nozzle Design - Today’s Technology – “Design what you can make”

Design Philosophy
• Raise Combustion Temperature to increase Engine Output/Performance.
• Manage cooling techniques to increase performance while maintaining part life.
 ➢ Impingement Cooling
 ➢ Film Cooling
 ➢ Thermal Barrier Coatings
 ➢ High Temp Advanced Alloys

Design Challenges
• Overcool the Nozzle to mitigate TBC Spall Risk
• Traditional manufacturing methods overcool some regions to cool hotter areas on the Nozzle
• Developing high oxidation resistant materials is costly
Nozzle Design – Tomorrow’s Technology – “Make what you can design”

Conceptual Design & Feasibility

Advanced Film Shapes
Near-wall Microchannels
Recirculating Trailing Edge

Axial Film Flow for Leading Edge
Advanced H-Bumps
Advanced Cooling
Airfoil Compartmentalization & Impingement Reuse

Additive Modalities & Materials

Program focus will be on high-temperature alloys, and additive modalities that enable their use

“Mature” 3D Experience
Current 3D materials
Advanced GTs

Strength & Oxidation Resistance

Focus area
3D Printing Challenge

November 11, 2019
Additive Modality Comparison

Direct Metal Laser Melting (DMLM)
- Excellent Dimensional Control
- Excess Powder More Easily Removed
- Susceptible To Strain Age Cracking
- Support Structures Needed & Orientation Dependent

Binder Jetting
- No Support Structures & Orientation Independent
- Not Susceptible To Strain Age Cracking
- Machine Cost ~50% Lower Compared To DMLM
- Excess Powder Removal Difficult Due To “Green State” Fragility And Smaller Powder Particle Size
- Dimensional Control Difficult During Sintering

Fused Deposition Modeling (FDM)
- No Excess Powder To Be Removed
- Not Susceptible To Strain Age Cracking
- Machine Cost ~80% Lower Compared To DMLM
- Dimensional Control Difficult During Sintering
- Support Structures Needed For Printability
- Lower Feature Fidelity And Higher Surface Roughness

Each Modality Presents Opportunities And Challenges When Producing Complex Geometries
Airfoil Design & Artifact Coupon Print Trial Summary

- Pinned Wall Trials
- Round Cooling Holes
- Round Serpentine and Elliptical Serpentine Channels
- Walls With Constant Spacing and variable thickness Ranges

Artifact Coupons Create Relatively Fast And Lower Cost Learning Of Modality Capabilities And Challenges
Airfoil Design & Artifact Coupon Print Trial Summary

Artifact Coupon Print Trials
- Contained specific simplified features representative of the advanced airfoil design.
- Designed to determine what features could be achieved without significant risk in production scale-up.

FDM Trials

Binder Jet Trials
- Pinned wall coupon
- Wall thickness Coupon
- Deflection of wall with pins starts at wall thickness ~0.050"
- Variable hole diameter coupon showing green & sintered state
- Some damage to holes on exterior from physical powder removal
Print Results Summary

Binder Jet

Challenges
- Trapped Powder.
- Significant Distortion In Some Areas.

There is line of sight to producing complex features in Binder Jet.

Going forward
Further refinement to demonstrate dimensional quality, high yield and powder removal capability.

DMLM

Challenges
- Strain Age Cracking

DMLM is favorable for producing full nozzles with complex cooling geometries.

Going forward
Part geometry and build orientation will be defined to minimize or eliminate strain age cracks.

FDM

Challenges
- Trapped Powder.
- Significant Distortion In Some Areas.

The least favorable option for producing Nozzles with complex cooling geometries.

Going forward
Will not be pursuing FDM for complex geometries at this time.
Test Plan and Key Technology Gaps

Technology Gaps
1) Cooling Technology
 - Empirical thermal correlations for additive cooling features needed.
 - HTC
 - Film cooling effectiveness

2) Wall Architecture Technology Bench Testing
 - Jets Testing Rig needed to validate Phase I assumptions and design benefits.

3) Additive Material Properties.
 (analogous to Cast properties vs Forged properties)
Summary

The road to 65% CC efficiency is challenging

Additive Manufacturing is a paradigm shift in design for manufacturing.
 Early Career Engineers are the experts in additive manufacturing and design.

In this program GE....
 • Studied Advanced Wall Architecture and Airfoil Concepts enabled by Additive Manufacturing.
 • Identified and evaluated Additive Methods and Materials.
 • Developed a Test Plan for future execution.

DMLM and Binder Jet are being pursued for further development on complex turbine components.
Questions?