# 2019 UTSR Project Review Meeting

Novel Modular Heat Engines with sCO<sub>2</sub> Bottoming Cycle Utilizing Advanced Oil-Free Turbomachinery DOE FE0031617: Phase 1

PI: Bugra Ertas, PhD

Senior Principal Engineer, Mechanical Systems

**GE Research Center** 

11/6/2019

#### **EXTENDED PROJECT TEAM**

| Doug Hofer, GE    | Rahul Bidkar, GE       |
|-------------------|------------------------|
| Joey Zierer, GE   | RK Singh, GE           |
| Dave Torrey, GE   | Brittany Tom, SWRI     |
| Libing Wang, GE   | Arron McClung, SWRI    |
| Xiaohua Zhang, GE | Vandana Rallabandi, GE |

# **Motivation and Objectives**

- Currently compressor station underutilize WHR
- sCO<sub>2</sub> WHR bottoming cycle
  - 40% simple cycle  $\rightarrow$  (+) 50% combined cycle
  - Savings in fuel costs/CO<sub>2</sub> emissions
  - Improve compressor station profits
- Perform Conceptual Design of Turbomachinery
  - Define bearing requirements
  - Perform Bearing Conceptual Design
  - Identify risks with immersed generator
  - Perform economic analysis of sCO<sub>2</sub> WHR unit



# **WHR Turbomachinery Drivetrain Concepts**

- Current high-power drivetrain configs.
  - Oil-bearings for shaft support
  - Gearbox for high-speed to low-speed power transmission
  - CO<sub>2</sub> leakage
- Oil-Free non-Hermetic Concept
  - All bearings → gas bearings → lower power loss→ design simplification
  - Still requires oil system for gearbox
  - CO<sub>2</sub> leakage
- Oil-Free Hermetic Concept
  - All bearings  $\rightarrow$  process gas bearings
  - Mechanically decoupled system  $\rightarrow$  No GB
  - No  $CO_2$  leakage  $\rightarrow$  completely hermetic
  - Requires a high speed line and low speed line
  - Low speed line has 2 modes
    - 60Hz power generation  $\rightarrow$  grid
    - >60Hz NG compressor drive



# **Conceptual Design Process**



# Thermodynamic Cycle

- Cascaded Brayton Cycle
  - PGT25+G4 GT used for study (LM2500 engine platform)
  - ~34MW @ ~40% simple cycle efficiency
  - Max GT exhaust temperature  $\rightarrow$  510 C @ 89 kg/s
  - Efficiency debit from WHR system accounted for
- Cycle has two distinct loops
  - High temp loop  $\rightarrow$  low speed line
  - Low temp loop  $\rightarrow$  high speed line
  - High/Low temp recuperators



|                         | PGT25+ G4 | PGT25+ G4 with sCO₂ WHR |
|-------------------------|-----------|-------------------------|
| Output (kW)             | 34,000    | 33,252                  |
| Efficiency (%)          | 41        | 40.6                    |
| Heat Rate (kJ/kWh)      | 8700      | 8867                    |
| Fuel Consumption (kg/s) | 1.730     | 1.724                   |

# **Turbomachinery Aero-Design**

- Trade-Off Analysis
  - Flow path root diameter
  - Number of stages
  - Stage height
  - Speed
  - While checking rotordynamics

- Low speed Expander speeds
  - NG centrif. compressor survey
  - 60Hz power generation



# **Electromagnetic Design**

- PM Synchronous machine
  - High torque density and efficiency
  - 3 Phase electric power generation
  - Samarium-Cobalt PM; 160M/s surface speed
  - Torque correlation used to initially get L

 $T = \sigma L \pi D^2/2$ 

—— Magnetic Gap Shear stress (13kPa-300Kpa)

- FEA used for electromagnetics/thermals
- Analysis Output
  - Losses
    - Stator and rotor core
    - Copper losses
    - Windage



# High-Speed Drivetrain Rotordynamics

- Lateral Rotordynamic Model
  - 3 bearing machine architecture
  - Stacked-tie-bolt rotor construction
  - Single stage overhung centrif. compressor
  - 3 stage axial expander (integral to shaft for stiffness)

ດີ 10000

1000

- Direct drive/rigidly coupled PM starter/generator
- Undamped Critical Speed Map
  - Used to position critical speeds
  - Anchoring of bearing stiffness values
  - Ensuring tie bolt frequency > MCOS
  - Cross-check 1G shaft deflections
  - Operation above 3<sup>rd</sup> critical speed below 4<sup>th</sup> critical speed



### **Damped Rotordynamic Eigenvalues & Unbalance Response**

- Calculation of damped forward whirl mode eigenvalues
- Log dec and Frequency calcs for varying bearing damping values
- Complement w/synchronous response to rotor unbalance
- Diminishing return for vibration response with damping increase
- Balance log dec values with dynamic bearing loads





# Low Speed Expander Turbine Foil Design

- Low temps from WHR application advantageous
- Low cost material selection
- Can consider dove-tailed foil designs
- T-Root bucket design
- 1<sup>st</sup> Stage worst case FEA model
- Stiffness diameter of shaft defined through this analysis → feeds into rotordynamics





#### Low Speed Drivetrain 12krpm Expander

Low Speed Drivetrain 12krpm PM Generator



#### **Oil-Free Hermetic High-Speed Drivetrain: 27KRPM**



### **Oil-Free Hermetic Low-Speed Drivetrain: 12KRPM**



### Immersed CO<sub>2</sub> Generator Cavity Thermal Stability

- Heat generation from PM EM needs to be addressed
- CFD thermal analysis; 1/12 stator-rotor sector
- Weak link  $\rightarrow$  electrical insulation
- Mitigated using: Stator (H2O) cooling jacket and Magnetic gap cooling (CO2),

|                        | Per 1/12th section for 27k RPM machine |      | Per 1/24th section for 12k<br>RPM machine |      |
|------------------------|----------------------------------------|------|-------------------------------------------|------|
| Water jacket cooling   | -517                                   | W    | -1205                                     | W    |
| Stator heat generation | 546                                    | W    | 2088                                      | W    |
| Rotor heat generation  | 8                                      | W    | 33                                        | W    |
| Windage 1/12th         | 641                                    | W    | 1708                                      | W    |
| Difference             | 678                                    | W    | 2624                                      | W    |
| CO2 flow needed        | 0.0056                                 | kg/s | 0.0216                                    | kg/s |
| Total CO2 flow         | 0.0672                                 | kg/s | 0.5184                                    | kg/s |



#### Gas Bearing DOE: Windage Leakage, Load Capacity

- Bearing CFD analysis using real gas props. includes
  - Setting desired running gap under load
  - Use orifice map DOE and inlet pressures
  - Calculation of leakage and windage
- Gas bearing show an order of magnitude less heat generation compared to oil-bearings



# **Compressor Station WHR Economics**

- sCO2 WHR performance
  - 41% → 51.3% cycle efficiency increase
  - Fuel consumption/MWh reduction by 20%
  - CO2 emissions/MWh reduction by 20%
  - System cost 10-15M; 3-4 breakeven years
  - Emission-free WHR
    - EPA's New source review: stations in non-attainment areas hesitant to upgrade
  - WHR concept offers compressor stations options: 60Hz power gen or compressor drive
- Comparison to ORC\*
  - Power conversion rate ~2X
  - Break even years cut by half

| Configuration                                                        | Net<br>Power | Cycle<br>Efficiency<br>$\eta = \frac{Net Power}{m_{fuel}*LHV}$ | Heat Rate $\frac{1}{\eta}$ * 3600 | Normalized<br>NG Fuel<br>Consumption:<br>metric tons<br>per MWh | Normalized<br>CO2 Emission:<br>metric tons<br>per MWh |
|----------------------------------------------------------------------|--------------|----------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|
| 1. Baseline: Single<br>PGT25 +G4                                     | 34 MW        | 41%                                                            | 8700<br>kJ/kWh                    | 0.183                                                           | 0.494                                                 |
| 2. Baseline + Oil-<br>Free Hermetically<br>sealed bottoming<br>cycle | 42.0 MW      | 51.3%                                                          | 7019<br>kJ/kWh                    | 0.148                                                           | 0.400                                                 |



\* Sweetser, M., Leslie, N., "Subcontractor Report: National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota." ORNL/TM-2007/158. Oak Ridge National Laboratory, Oak Ridge, TN (2007)

# Conclusions

- sCO2 WHR unit shows to increase efficiency from 41% → 51.3% with investment break even years = 3-4
- sCO2 Compared to ORC WHR: Power conversion rate increase nearly 2X and break even years cut in half

- Risks:
  - High-speed drive train: lightly loaded bearings but required t traverse third critical speed (bending mode)
  - Low-speed drive train: Highly loaded bearings but operates below third critical speed (bending mode)
  - Generator cavity thermal balance/stability

|                  | ORMAT ORC      | sCO₂ WHR<br>Hermetically Sealed |
|------------------|----------------|---------------------------------|
| WHR Conversion % | 15%            | 28%                             |
| Recovered Energy | 5.5 MW         | 8.75 MW                         |
| Annual kWh       | 43 million kWh | 69.0 million kWh                |
| Capital Cost     | \$13.75M       | \$10-15M                        |
| Annual O&M       | \$250,000      | \$5,000-50,000                  |
| Capital Costs/kW | \$2500/kW      | \$1142-1714/kW                  |
| Breakeven Years  | 7 years        | 3-4.2 years                     |

