

Fuel Injection Dynamics and Composition Effects on Rotating Detonation Engine Performance

PI: Mirko Gamba

Co-I: Venkat Raman

Fabian Chacon, Alex Feleo Takuma Sato, and Supraj Prakash

Department of Aerospace Engineering University of Michigan

2019 UTSR Workshop, November 5 – November 7, 2019 Orlando, FL

DOE FE0031228 with Dr. Robin Ames as Program Monitor

Outline

• Introduction to the problem and general approach

- Experimental activities
- Computational activities

Overarching objectives of the project

• Objective 1:

Develop a comprehensive understanding of injector dynamics, coupling with plenums & diffuser back-reflections, and their impact on RDE mixing, operation and performance.

• Objective 2:

Develop a comprehensive understanding of multi-component fuels (syngas and hydrocarbon blends) on RDE detonation structure and propagation, operation and performance.

• Objective 3:

Develop advanced diagnostics and predictive computational models for studying detonation propagation in RDEs, with arbitrary fuel composition and flow configuration.

Multiple wave systems and erratic behavior

Although detonation occurs:

- Wave speed and max pressure are generally less than ideal
- Behavior can appear erratic (large and aperiodic cycle-to-cycle variations)

Overarching goals on RDE dynamics

- Preamble: Recognize that RDE is an intrinsically dynamic system
 - Components need to be tuned or be robust to external dynamics for stable op
- Goals: Understand how operability and performance is affected by
 - Dynamics of each component
 - Multi-component fuels
- What needs to be done to understand dynamics
 - 1. Identify and classify them
 - 2. Understand the underlying mechanism for their existence
 - **3.** Determine whether they are important
 - 4. Determine how they scale
 - 5. Investigate if and how the response of components couple
 - 6. Understand how the dynamics of components couple to the detonation wave
 - Air inlet / fuel injection dynamics
 - Wave reflections from inlets and exhaust
 - Wave diffraction / reflections
 - Unsteady mixing
 - Susceptibility to onset of deflagration
 - Vitiation effects (scavenging or partial pre-ignition)
 - Fuel chemistry effects

Outline

- Introduction to the problem and general approach
- Experimental activities
 - Identify and classify system of waves that may exist in an RDE
 - Investigate how they affect the operation of an RDE
 - Discussion of some of the important underlying mechanisms and implications
- Computational activities

Pressure and OH* variation signature

When we started, we look at frequency content...

- Multiple, superimposed tones
 - Wave propagation: $f \cong 0.8 f_{\rm D}$
 - Tone I: $f \cong f_D$ Present in detonation mode as flow rate increases, but also in deflagration mode
 - -Tone II: $f \cong 0.5 f_{\rm D}$ Present in deflagrating mode
 - Tone III: $f \cong 0.25 f_{\rm D}$ Weak feature present in detonation mode
 - -?: Some not identified
- Hypothesis:
 - Due to coupling with and response of plenums

Development of Circuit Wave Analysis for the identification of arbitrary waves

1. Take a subsection of the full *x*-*t* diagram, (e.g., 171 frames or about 10 waves)

3. Use a modified Radon transform to reduce the GSFT to a series of curves like the one above.

4. Extract peaks and corresponding information to gather information about the wave systems

5. Repeat for all subsections of the *x*-*t* diagram

RDEs operate under a complex system of waves

Three-wave system appears in different systems under several operating conditions:

A: **Primary detonation wave.** Travels at 80% of Chapman-Jouguet Velocity

B: **Counter rotating fast wave.** Travels counter to the primary detonation wave. Typically travels at approximately the same speed as Primary Detonation. However can move up to 200 m/s slower

C: **Counter rotating slow wave pair.** Two waves travelling counter to the wave at approximately 1000 m/s

There might be others depending on geometry/conditions

Wave speeds up as the strength of secondary waves decreases

But secondary wave(s) can be controlled (suppressed)

- Identical condition of operation, but:
 - Naturally hops between modes (with and without)
 - Secondary wave is suppressed

But secondary wave(s) can be controlled (suppressed)

- Identical condition of operation, but:
 - Naturally hops between modes (with and without)
 - Secondary wave is suppressed

Some definitions

More properties & impact of secondary wave

Conditional phase-average property distribution

- Combine information of x-t diagrams, with dynamic pressure
 - Generate a measure of the impact between primary and secondary wave coupling (modulation of primary wave)

Conditional phase-average distribution: pressure

- Measure of variation of cycle pressure profile conditional to the phase of secondary wave
- Measure of the impact between primary and secondary wave coupling (modulation of primary wave)

Conditional phase-average distribution: OH* emission

Conditional phase-average distribution: different view

Conditional phase-average distribution: combine info

Secondary wave affects primary detonation wave

Let's look back at OH distribution (from OH PLIF imaging)

Let's look back at OH distribution (from OH PLIF imaging)

Dark band

- Consistent variation
- Suggests continuous source
- Suggests structured, axial stratification

Pockets Quenching, poor mixing, non-ideal detonation structure

Let's look back at OH distribution (from OH PLIF imaging)

air/fuel injection,

which modulates

injection rates

Pockets Quenching, poor mixing, non-ideal detonation structure

Large Scale Structure: Secondary Wave Effect; Proposed Mechanism

- 1. Detonation wave(s), steady propagation to right
- 2. Hot products, expanding and convecting downstream
- 3. Secondary wave, steady propagation to left
- Partial reactions associated with secondary wave (Parasitic Combustion)
- 5. 'Pressure wake' caused by secondary wave propagation
 - As secondary wave propagates, it influences injection causing an axial/azimuthal stratification

Large Scale Structure: Secondary Wave Effect; Proposed Mechanism

After collision and passing through one another...

FI

Lessons learnt

- Presence and properties of secondary waves can be quantified
- Identified a complex system of waves
 - -Three wave system
 - -Affects the stability of the RDE, but in a predictive manner
 - Mechanisms are not fully understood

Secondary waves couples with & increases secondary combustion

- Secondary-wave-induced deflagration quenches detonation
- Direct effect

• Secondary wave introduces additional injector dynamics

- Spatially and temporally varying stratification is created
- Indirect effect
- Secondary wave can be somewhat manipulated (suppressed)

Outline

- Introduction to the problem and general approach
- Experimental activities
- Computational activities

Mixing and Detonation in Axial Injection Systems

Venkat Raman Mirko Gamba

Takuma Sato, Supraj Prakash, Fabian Chacon, Logan White

University of Michigan, Ann Arbor Department of Aerospace Engineering

- Full system RDE simulations
- Axial injection systems
 - How is mixing different in axial systems
 - → Comparison with experiments
 - → What are the sources of efficiency loss

Air Force Research Lab (AFRL)

UM Geometry (Pintle)

• Detailed chemical kinetics

- → 9 species, 19 steps
- Detonation front resolved using 10 grid points
 - Note that waves are thickened due to mixing losses
- Roughly 30 million CVs
 - → 4000 cores
 - 3-5 days to complete full scale statistics
 - → ~15-20 cycles

Time of peak heat release relative to wave

• Two deflagration regions identified

- → May not be always present
- For instance, AFRL Edwards rocket combustor has single contact layer
- Flame-anchoring observed
 - Large recirculation region
 - Reduces flame speed

• A comprehensive understanding of detonation physics

- Three-way link: a) injector recovery; b) unsteady mixing; c) incomplete detonation
- → Provides basis for modeling

Questions?