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Overarching goal:
investigate non-idealities and their link to loss of pressure gain

e Detonation non-idealities
®— Incomplete fuel/air mixing
e®— Fuel/air charge stratification
®— Mixture leakage (incomplete heat release)
— Parasitic combustion:

e Premature ignition (e.g., burnt/unburnt interface)
e Stabilization of deflagration (flame)
®— Detonation-induced flow instabilities
e Richtmyer-Meshkov (R-M) instability
e Kelvin-Helmholtz (K-H) instability

e They lead to loss in pressure gain
— Linked to loss of detonation propagation
e Additional losses exist during flow expansion
— Secondary shock and (multiple) oblique shock
— Flow instabilities (e.g., K-H instability)
— Mixture leakage through burn/unburnt interface

Detonation front ‘

From: (top) Nordeen et al., AIAA 2011-0803



Overarching objectives of the project

e Objective 1:
Develop canonical and operational RDE configurations, as well as
imaging-based laser diagnostics for understanding fuel stratification,
leakage, parasitic combustion and detonation structure under non-
ideal conditions in RDEs.

e Objective 2:
Develop a comprehensive picture of the fundamental physics
governing non-idealities and how they impact RDE performance and
operability from both experiments and simulations.

e Objective 3:
Develop detailed computational tools (DNS and LES) for studying
detonation wave propagation processes in RDEs.



Outcomes

e OQutcome 1:
ldentify the sources and properties of non-idealities in RDEs, their
contribution to loss in pressure gain, and potential design limitations

e OQutcome 2:
Detailed experimental tools and measurements (databases) about
fundamental aspects of RDEs will become available to the RDE
design community.
—We have established collaborations with industrial partners

e OQutcome 3:
Detailed computational tools (DNS/LES) as well as combustion
models with detailed chemistry for pressure gain combustion will be
made available to the RDE design community.
—e.g., openFoam development of RDE modeling
—e.g., transfer of detonation computational models partners



Outline

e Introduction to the problem and general approach

e Experimental activities

e Computational activities



What has been achieved: experimental activities

e RDE test facility: Hierarchy of experiment systems
—Injector sector (unwrapped) for simple flowfield visualization
— Modular RDE to investigate operation
— Race track (optical) RDE to conduct flowfield measurements using laser-
diagnostics
e Design and analysis of canonical injection schemes
—We considered three canonical configurations
—Specifically focused on an axial air inlet configuration
e Identification of secondary combustion as a limiting factor
— Parasitic combustion
—Commensal combustion

—Their effects on detonation properties

e Diagnostics and tools for diagnostics for RDEs

—Race track RDE enables convenient laser diagnostics in realistic RDE flowfield
— OH PLIF in RDE flows

— Emission measurements to identify secondary combustion



Experimental multi-level approach
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SHOCK/STRATIFICATION INTERACTION
AND SHOCK INDUCED MIXING



Initial understanding of jet/shock interaction

* Different portions of the shock move at different speeds

* Shock wave is deformed by radial stratification

* Generation of counter-propagating waves (compression / expansions)
* Depends on density and speed of sound ratios
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MIXING MEASUREMENTS IN
INJECTOR SECTOR



Injector sector subassembly for mixing studies
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INVESTIGATE OPERATION WITH DIFFERENT
INJECTION CONFIGURATIONS (FLOWFIELD
STRUCTURE, MIXING PROFILE, ETC.)



6” diameter round RDE

e Modular configuration in its geometry
and operation

— Allows for parametric studies for (e.g.,
geometric scaling , dynamics studies)

e Multiple injection schemes:
— Axial air inlet
—Radial air inlet To exhaust e

Afterburner
wall

— Discrete injection
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Characterization of the operation of RDEs with different injection
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Characterization of the operation of RDEs with different injection
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INVESTIGATE SECONDARY COMBUSTION IN
RACETRACK AND ROUND RDE



Visualization methods

e High-speed OH* chemiluminescence:

—Imaging near 310 nm

. RT-RDE
— 2 ps exposure with .

moderate gain | High Speed IRO | N

—Rate: 80 kHz -

— Used to visualize low
intensity combustion
events

e OH planar laser-induced fluorescence:
A2V 2 ! " RDFE
AT X H(U =1v = O) Optical filter e .
— Excitation of Q;(9) and Q,(8) near 284 nm
—Collection at 310 = 10 nm _ N
— Low speed acquisition produces a series

of single-shot uncorrelated images ICCD camera i

Laser sheet



Exploring parasitic combustion with the RT-RDE (1)

Imaged region
|

e Operation conditions:
— Fuel: Hydrogen

— Equivalence ratio: 1.3
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RDE Biology: Parasitic vs. Commensal Combustion

e We can now differentiate between two types of secondary
combustion based on their impact on the detonation wave.
Detonation wave

< OH chemiluminescence
A
Parasitic combustion Commensal combustion
e Combustion before arrival of wave e Combustion trailing the wave
* Heat released before the detonation * Heat released after the detonation
wave does not support it wave does no have an impact on it

* Mixture is heated and vitiated * Consequence of mixture leakage

MOJ} JUBJORSY



OH distribution from pseudo-series
A B C

e Detonation wave (DW)
e Non uniform structures present in wake of the detonation
e Contact burns 1 and 2 (CB1) and (CB2)
e Buffer region (BR)
— Increased resolution shows significant dark band
e Auto ignition kernels (AIK)
e Parasitic and commensal Combustion (PC) and (CC)
— Commensal is not easily distinguished as in OH* chemiluminescence



Representative Cycle of OH* Emission

e Constructed from phase averaging across cycles

e Time normalized by average rotational time (tg) Narrow-band

bandpass filter

Multimode ¢

e Regions are arbitrarily chosen based on Fiber
. . Output
prominent points of change Signal

—

— Work is being done to better identify the regions PMT Collection lenses RDE Inner Body
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Secondary combustion changes detonation properties
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Fraction leaking through
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Lessons learnt

e Reacting flowfield is a detonating field mixed with secondary combustion regions
— Wide spread parasitic combustion is observed
— Buffer region made of either pure fuel or air, depends on relative response
— Commensal combustion caused my mixture leakage

e Detonation properties are reduced by parasitic combustion and mixture leakage
— Secondary combustion reduces peak pressure and speed
— Counter propagating waves increases secondary combustion
— Practical RDEs may operates with a significant fraction of fill region consumed away from

detonation wave

e Even if parasitic combustion does not occur, entrainment of post-detonation
gases into fresh mixture (vitiation or EGR effect) has a similar effect of parasitic
combustion
— Vitiation significantly alters wave properties
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Understanding Detonation Structure
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M Effect of Fuel Stratification

UNIVERSITY OF
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¢ Fuel-air mixing not complete before wave arrives

= Strong spatial variations 1in equivalence ratio

® What is the effect of such variations

= Structure of detonations in stratified mixtures




M LMDE Configuration I
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M Detonation Structure
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Shock front

Detonation front

Reactant gases




M Detonation Wave Behavior in LMDE
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¢ 3D detonation wave consists of complex reaction zone

= Broadening reaction zone with detonation to deflagration regions

= Turbulent mixing of post-detonation and intermediary gases behind triple points

Numerical Schlieren
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M Detonation Analysis
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® Strong detonation at twice jet diameter

¢ Transition to deflagration at 5.3-6.9 injector diameters from ba

= Heat release local maxima in deflagration region Y [m]0 o1

® Peak heat release at von Neumann pressure of H>-O: detonatiol
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M Computational Approach /4"3@_
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e Canonical geometry B v
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— Confined channel with open outlet
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M Fucl-Oxidizer Distribution

UNIVERSITY OF
MICHIGAN

Fuel equivalence ratio: ¢ = {(0,1.3} | ;' E— —
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. . . 3
e Scalar field is attributed to fuel mole fraction 3
E
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— Remaining species and density computed channct 1 SSRGS
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 Want to conserve statistics among cases

— Total fuel mass Xq, = 10,0.353}

Case 2 /JJ‘x

— Mean, variance, and standard deviation of

Open
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o 3 different stratification length scales
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— Vary ¢ - preserve Fourier coefficients

— Integral length scales: ¥(k,0)
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— Case 3: 1.854 mm =2 £k /dk= 10




M Numerical Schlieren
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M Detonation Cell Structures
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® Fuel patch locations and density irregularities
result in staggered detonation cells
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M Baseline Case
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M Preburning Ratio /43@_
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¢ Preburning ratio - a metric to describe level of local mixedness
with burnt gas mixtures e
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M Shock Velocity
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M Conclusions AL
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¢ Detonations in non-premixed discrete injectors is vastly different from ideal premixed
systems

® Thicker detonation wave
= Detached reaction front
= Complex internal wave structure
™ Variations 1n propagation speed
® Pre-burning and stratification
= Can reduce speeds by 50%

= Results in vorticity generation behind the wave that increases fuel oxidation



Questions?



