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Review of Background/Objectives/Technical Approach

* Metal AM enabling gas turbine design exploration of cooling schemes not
currently manufacturable

* Potential transformational gains in turbine operating temperature and
durability

* To harness opportunity need to mature thermal design tools

* Accommodate the very complex “roughness field” that invariably characterizes these
engineered flow passages

* Conventional roughness modeling for CFD predictions of flow field/convective heat
transfer are inadequate
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Review of Background/Objectives/Technical Approach

* Accordingly, this project develops Discrete Element Roughness Modeling
(DERM), in the context of Large Eddy Simulation (LES) and Reynolds
Averaged Navier-Stokes (RANS) methods

* Necessary and sufficient for mechanistic predictions of additively manufactured
turbine cooling scheme configurations

 DERM also represents a viable design approach for conventionally manufactured
internal blade cooling features
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Review of Background/Objectives/Technical Approach

* Advance CFD methods for accuracy and run time requirements for design and
optimization relevant to additively and conventionally manufactured turbine
cooling scheme configurations

e Discrete Element Roughness Modeling (DERM) mechanistic-based model for roughness
predictions

* Context of Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes (RANS)
methods
* Synthesis of state-of-the technology:
e CFD modeling (DNS/LES/RANS) and optimization
* Powdered metal additive manufacturing
* Multiscale 3D scanning and attendant roughness field characterization
* Flow/heat transfer measurements
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Review of Background/Objectives/Technical Approach

* Deliver to turbine blade desigh community a sufficiently physics rich and
validated model set for design of blade cooling passages characterized by
roughness morphology and tolerancing inherent to L-PBF manufacturing of
these blades.

 Straightforwardly implemented within current OEM CFD-based turbine design practice.
e 3D.. far more general in breadth of applicability than Q1D
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Review of Background/Objectives/Technical Approach
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Numerous new configurations tested in RIFT

* Real DMLS surfaces from CT scans/optical T
profilometry

e Real _x102_Upskin: Hastelloy-X (a nickel-chromium-iron-
molybdenum alloy)

* Inco718 Upskin: Inconel 718 printed with surface pointed
“up” at 45°, x50

* Inco718 Downskin: Inconel 718 printed with surface
pointed “down” at 45°, x50

 DERM Analog surfaces replicating features of real n °
surfaces with real AM roughness Real x102 Inco718 Downskin  Inco718 Upskin

* Elliptical Analog: Created to match k, of Real_x102 from
Flack and Shultz correlation

* Elliptical Cone Analog: Created to match k, of Real_x102
from Flack and Shultz correlation

* Single sided and double sided
e Combinations of the surfaces (top versus bottom)

() 6
y ¢ 2 3 Y 2 0 y b 0

Ellipsoidal Analog  Elliptical Cone Analog
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Experimental Approach and Roughness Panel Construction

* Roughness and Internal Flow Tunnel (RIFT)

* Panels printed using FDM or cut using
CNC machine (heat transfer surfaces)

* Channel flow with two rough walls (86% -
of perimeter)

* Bulk pressure loss measurements
* Single wire and X-array anemometry Fow Suagneners

and Transition Section

Test Section
X 228.6 mm by 35.56 mm
‘ (9in. by 1.42in.)

Flow Direction

Ellipsoidal Cone Surface Panels
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Bulk Flow Friction Factor Investigations
* Year 1: Real_x102 and the analog surfaces

* Year 2: AM printing orientation and combination effects (variations in roughness
parameters along perimeter caused by AM printing orientation)

* Focused on Inco718 Upskin and Inco718 Downskin combinations
* Added Real_x102 surface to create wider range of Rg,,/Dh

0.4 - - ey . — 0.4

0.4

| —e— Smoath &— Smooth |[—&— Smooth
| —®&— Inco718 Downskin #— Inco718 Upskin | ] | —®— Inco7 18 Downskin
—4#— Inco718 Upskin —4— Realx102 —#— Realx102

4— Combined 1 4~ Combined 1 | 4~ Combined 1
| —w— Combined 2 | —¥— Combined 2 | | |—¥— Combined 2

Laminar f = 76/Re Laminar f = 76/Re Laminar f = 76/Re e
— = Haaland (¢/D = 0.0) — = Haaland (/D = 0.0) = = Haaland (¢/D = 0.0) W
------- Haaland (¢/D = 0.0205) -------- Haaland (¢/D = 0.0055) | ----=-~ Haaland (¢/D = 0.0205)
-------- Haaland (¢/D = 0.0055) W
0.1+ — 1 gAr OO ey T q LA r o i TEE - -
fow

0.02 -




"’“,’ PennState % ‘ Baylor University
Mechanical Engineering

Bulk Flow Friction Factor Investigations
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Bulk Flow Friction Factor Investigations
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Bulk Flow Friction Factor Investigations
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Hot film measurements

Inco718 Upskin on Bottom Inco718_Downskin on Bottom

* UV, uv,uu, vv " ‘ " 1T 1 =
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Hot film measurements: Law of the Wall

e Quantify AU* = |
* Different panel combinations |
affect relative profile thickness v g
 CFD Validation quality local
conditions for a range of P 1A
roughness morphologies and pe o 7 » e e
y* y*

Reynolds numbers of
relevance to turbine cooling Inco718 Downskin Inco718 Downskin

passages with smooth ceiling with Real_x102 ceiling
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RIFT Modification for Convection Mea

Heat transfer plates have been etched (primer) and
painted

Flat black for the infrared emissivity

IR window and thick acrylic HT base-plate have been
constructed

e Aluminum plate with 0.020” lip and epoxy
* Convection shakedown tests imminent
ABS S:u/rfa.c_e';. | '

37

TEmi=ines

e
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RIFT Modification for Convection Measurements

'ABS Surface
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RANS modeling/parameterizations

RANS model of each RIFT configuration using in-house structured, finite-volume code
e Geometrically-resolved roughness
* 60 million cells
e Steady flow, third-order accurate in space

* Spalart-Allmaras turbulence model

04 0 04 08 1.2
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RANS modeling/parameterizations

(L0l | B L B B B R |
Comparison with measured channel e {a L o e
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* Flat surface L,

* Upskin 2 N 000 eeeeee s 4000 ¢ o °

=\

* Downskin .’0’\ WONG B 0000 006 00
Y i Ak SN
* Real_x102 i I S
R
e ... and four combinations of the above
102 | | y | g | |
1 2 3 4 5 6 7




- J PennState % ‘ Baylor University

Mechanical Engineering

0 —
10 | | | l-! l | | l-! l-l l-lﬂ | | | | I | | ] | | | ! | | | | ! | | | |

L smooth, [ © smoath i
L : Upﬁhnﬂﬁm o Up=kin -
L & Downskin 55, Exp . Exp - gmm -
I Realcild 55, Bxp : l._||:=s|1n+|:::-:ns:n -
L Doemskin,
L RELRTESNED | Rans o Immmren
% Fealk 102 + Daoevnskin, Exp o Reatk 102 DS
. -‘- Realx102 Oua, Exp ] ® -
o ¢ ¢ 0
o ¢ & ¢ L 4 ¢
W00 & S04 40 & 00 * 0 ¢ o o
0 60 000 000 & ¢ & o
10'1.",”4”0 ¢ 466 4+ 4 0+ o+ o+ o 8 -
[ ¢ 000000000 S 6 0 o 0 i
Kg st i
N WHIINB 00000000 4 4000 ¢ & o _
_0‘\“% WOe W 0000 60 o ¢ ]
* ¢4 *— ¢ ¢
—* o _o o
- — & _ _ &
L Y Y o — 1
,]D—Z [ ] [ ] [ ] [ | I [ | [ ] [ ] [ ] I [ ] [ ] [ ] [ ] I [ ] [ ] [ ] [ ] I [ | [ | [ ] [ ] I [ ] [ ] [ ] [ ] I [ ] [ ] [ ] [ ]

1 2 3 4 5 5 7

ReDh =104



% ‘ Baylor University

‘-3 PennState
2% Mechanical Engineering

RANS modeling/parameterizations

Channel friction factor
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RANS modeling/parameterizations

Comparison with DR S SRR e
measured velocity ; S 1 . F— T RaNe Romg5000 7 ]
profiles at highest 15 SN O BeReme00 s ]
Reynolds number [ B
. iy i RANS, Re = 65000 O ]
 Velocity rake located > 1f ©O BeRe=e0 O ]
[ & .
35.5” downstream of "~ I Upskin+ Downskin &
plate upstream edge 5 [ Re=65000 & ]

* Friction velocity u;
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RANS modeling/parameterizations

The present experiments
allow comparison with the

measured —u’v' Reynolds

stress component at the
location of the velocity rake

2
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DERM model development/application

Minimal Model Form — Eulerian 2-"fluid” model

dopu;
PYj _
an
dopu;u; op 0 | du; Ouj\
= | | — Du; + M,
aX]‘ aaXi aX] -O((Il T ut) (0)(] Oxi | Hi T :

a = volume distribution fraction of gas
Du; = drag model
M; = dispersion model
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DERM model development/application

Attendant terms for turbulence closure and energy equations

dapku;  d | U \ [ 0k
alu+—|{=—]| + P — ae + Other terms

an aX] | j

. d du; auj du;
P - an [aut (an i aXi)] an

dapey; 0 L M e +C1£P C2a82+0th X
an - aX] M Pl‘s aX] k k S HErHS

daphyuy;

aX]'

= viscous diffusion + turbulent diffusion + viscous work +

interfacial heat transfer + Other terms
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DERM model development/application

Approximate Grid Size and Relative CPU Time Per Element @ Re =540

Grid Relative CPU Meshing
Requirements Time Complexity

DNS! 0(107) High

Sublayer resolved RANS? 0(10°) 103 High
Immersed Boundary Method? 0(10%°) 104> Medium?

DERM?2 0(103) 106 Low5

k* based parametrization 0(103) 10 Low

4Spatially precise element geometry is required for cut cell

1Chan, JFM, 2015  2Present 3Estimate >Spatial distribution of volume fraction, C,, C;, required
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DERM model development/application
e Chan 2015 JFM studied numerous sinusoidal roughness morphologies in pies
at varying Re_.

(]
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DERM model development/application

180,000 cells 3,200 cells

* |deal calibration case for DERM:

* Can be modelled in RANS using a single
roughness element and cyclic boundaries

* Trig functions likely to be AM shape family
members

e Symmetry of sin/cos enable limit behavior
enforcement (smooth wall, porous wall,
“true” sand grain roughness)

RANS DERM
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h=modelled region

r=R  r=R+h/2
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DERM model development/application
* Chan Pipe 20_141

Q o ()

Wall pressure, axial velocity Wall pressure, vertical velocity Wall pressure, turbulent
contours along streamwise contours along streamwise kinetics energy contours along
stations stations streamwise stations












r"ﬂg PennState % \ Baylor University
Mechanical Engineering

DERM model development/application
* Chan Pipe 20_141, Comparison of DNS, sublayer resolved RANS and DERM

o5
| =
DNS g
. . DERM e
]
15 — _a-":
- ,/ 1 » L
R e T - 5 4 O += .{ P #
i’
10
5 =) :
i .,f*.
L
Um” 1g! 10° 10°
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Publications

APS: M32.00002

Title: Direct Numerical Simulation of Additively and
Conventionally Manufactured Internal Turbine Cooling
Passages

ASME Paper Number: GT2019-90931 ' ' .
Paper Title: Flow in a Scaled Turbine Blade Cooling Channel :> Journal of Fluids Engineering
With Roughness due to Additive Manufacturing

ASME Paper Number: GT2020-14809

Paper Title: Flow in a Simulated Turbine Blade Cooling Channel
With Spatially Varying Roughness Caused by Additive
Manufacturing Orientation

ASME Paper Number: GT2020-15630

Paper Title: Distributed Element Roughness Modeling of
Additively and Conventionally Manufactured Turbine Coolant
Passage Flow and Heat Transfer
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Students on Project

* Sam Altland
* Penn State, Mechanical Engineering
* Passed PhD Candidacy Exam September 2020, most course work complete

* Spent Summer 2018 and Summer 2019 at GE Global Research as an intern developing experimental
protocols for additively manufactured passages.

* Emily Cinnamon

* Baylor University, Mechanical Engineering

* M.S. Thesis scheduled for December 2019

* Performed x-array hot-film measurements in RIFT
* Gabriel Stafford

e Baylor University, Mechanical Engineering

* Began M.S. studies in Summer 2019

* Working on infrared heat transfer system and validation measurements
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Summary and Current/next steps

* Significant enrichment of RIFT database
8 surfaces/combinations (top/bottom) thereof, including smooth and “surrogates”
* 2-sensor hot film profiles + Ap = f

* Serves a validation basis for modeling

* RANS modeling of each of the combinations at Re,= 60,000:

* Year 1 results against upskin Hastelloy better than average: only 6/8 configurations
to date match f within 20%

* Mean velocity profiles fairly accurate although 1, has aforementioned
discrepancies

* Serves as a local supplement for DERM comparisons
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Summary and Current/next steps

* DERM development is showing excellent promise:
 Suite of DNS comparisons with “conventional” drag and dispersion modeling

* Far more efficient than any volumetric RANS modeling approach = same as surface
parametrization

* Heat transfer coming soon!
* RIFT
* RANS
* DNS/LES
* DERM
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Year 1 Activities and Progress
Test article configuration build and characterization

Arithmetic mean roughness

Ry = [NLPZ?:ZIY’I] Statistical and relative characteristics of the surfaces investigated

Elliptical Cone

root-mean-square roughness Real x102
_ Analog

3 Ellipsoid Analog
heightp = N_lpz?’:l(y’z)]z

1.887 2.075 1.214
Flack-Shulz eq sand height 2 436 2.419 1.504
roughness
Stimpson eq sand height ksp_s (mm) 6.933 7.045 Seelol
roughness ks ¢ (mm) 30.85 34.24 18.73
Streamwise autocorrelation A, (mm) 32.9 32.9 33.7

11 wNp (o3
skewness, Skw = [ XL ()| . 0.276 10.264 0.033
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Year 1 Activities and Progress
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