

LES and RANS/DERM Modeling for Design Optimization of Additively and Conventionally Manufactured Internal Turbine Cooling Passages

Year 2 Research Progress

Robert F. Kunz¹, David R. Hanson², Xiang Yang¹, Samuel J. Altland¹, Jacob C. Snyder¹, Karen A. Thole¹ The Pennsylvania State University ¹Department of Mechanical Engineering, ²Applied Research Laboratory

Stephen T. McClain Baylor University Mechanical Engineering Department Brian Brzek General Electric Global Research

UTSR Program Review 5 November 2018

Contents

- Review of Background/Objectives/Technical Approach
- Year 2 activities and progress:
 - Numerous new configurations studied (build angle, powder)
 - RIFT testing
 - RANS modeling/parameterizations
 - DERM model development/application
 - Heat transfer measurement progress
- Publications
- Summary and current/next steps

- Metal AM enabling gas turbine design exploration of cooling schemes not currently manufacturable
- Potential *transformational* gains in turbine operating temperature and durability
- To harness opportunity need to mature thermal design tools
 - Accommodate the very complex "roughness field" that invariably characterizes these engineered flow passages
 - Conventional roughness modeling for CFD predictions of flow field/convective heat transfer are inadequate

- Accordingly, this project develops Discrete Element Roughness Modeling (DERM), in the context of Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes (RANS) methods
 - Necessary and sufficient for mechanistic predictions of additively manufactured turbine cooling scheme configurations
 - DERM also represents a viable design approach for conventionally manufactured internal blade cooling features

- Advance CFD methods for accuracy and run time requirements for design and optimization relevant to additively and conventionally manufactured turbine cooling scheme configurations
 - Discrete Element Roughness Modeling (DERM) mechanistic-based model for roughness predictions
 - Context of Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes (RANS) methods
- Synthesis of state-of-the technology:
 - CFD modeling (DNS/LES/RANS) and optimization
 - Powdered metal additive manufacturing
 - Multiscale 3D scanning and attendant roughness field characterization
 - Flow/heat transfer measurements

- Deliver to turbine blade design community a sufficiently physics rich and validated model set for design of blade cooling passages characterized by roughness morphology and tolerancing inherent to L-PBF manufacturing of these blades.
 - Straightforwardly implemented within current OEM CFD-based turbine design practice.
 - 3D.:. far more general in breadth of applicability than Q1D

Numerous new configurations tested in RIFT

- Real DMLS surfaces from CT scans/optical profilometry
 - Real_x102_Upskin: Hastelloy-X (a nickel-chromium-ironmolybdenum alloy)
 - Inco718_Upskin: Inconel 718 printed with surface pointed "up" at 45°, x50
 - Inco718_Downskin: Inconel 718 printed with surface pointed "down" at 45°, x50
- DERM Analog surfaces replicating features of real surfaces with real AM roughness
 - Elliptical Analog: Created to match k_s of Real_x102 from Flack and Shultz correlation
 - Elliptical Cone Analog: Created to match k_s of Real_x102 from Flack and Shultz correlation
- Single sided and double sided
- Combinations of the surfaces (top versus bottom)

Ellipsoidal Analog

Elliptical Cone Analog

Experimental Approach and Roughness Panel Construction

- Roughness and Internal Flow Tunnel (RIFT)
- Panels printed using FDM or cut using CNC machine (heat transfer surfaces)
- Channel flow with two rough walls (86% of perimeter)
- Bulk pressure loss measurements
- Single wire and X-array anemometry

Ellipsoidal Cone Surface Panels

- Year 1: Real_x102 and the analog surfaces
- Year 2: AM printing orientation and combination effects (variations in roughness parameters along perimeter caused by AM printing orientation)
 - Focused on Inco718_Upskin and Inco718_Downskin combinations
 - Added Real_x102 surface to create wider range of R_{RMS}/Dh

Hot film measurements

- U, V, <u>uv</u>, <u>uu</u>, <u>vv</u>
- Different combinations of the rough panels

Hot film measurements: Law of the Wall

- Quantify ΔU^+
- Different panel combinations affect relative profile thickness
- CFD Validation quality local conditions for a range of roughness morphologies and Reynolds numbers of relevance to turbine cooling passages

Inco718_Downskin with smooth ceiling

Inco718_Downskin with Real_x102 ceiling

RIFT Modification for Convection Measurements

- Heat transfer plates have been etched (primer) and painted
- Flat black for the infrared emissivity
- IR window and thick acrylic HT base-plate have been constructed
- Aluminum plate with 0.020" lip and epoxy
- Convection shakedown tests imminent

ABS Surface

RIFT Modification for Convection Measurements

RANS model of each RIFT configuration using in-house structured, finite-volume code

- Geometrically-resolved roughness
- 60 million cells
- Steady flow, third-order accurate in space
- Spalart-Allmaras turbulence model

Comparison with measured channel friction factor, f_{DW}

- One RANS simulation at Re=65,000 for each channel configuration
- Geometries are:
 - Flat surface
 - Upskin
 - Downskin
 - Real_x102
 - ... and four combinations of the above

Channel friction factor

- One RANS simulation at Re=65,000 for each channel configuration
- Comparison with the highest available experimental Reynolds number
- Match within ±20% for six of eight configurations

Comparison with measured velocity profiles at highest Reynolds number

- Velocity rake located 35.5" downstream of plate upstream edge
- Friction velocity u_{τ} approximated from total channel friction-factor, f_{DW}

The present experiments allow comparison with the measured $-\overline{u'v'}$ Reynolds stress component at the location of the velocity rake

$$\begin{split} \text{Minimal Model Form} &- \text{Eulerian 2-"fluid" model} \\ & \frac{\partial \alpha \rho u_j}{\partial x_j} = 0 \\ \\ & \frac{\partial \alpha \rho u_i u_j}{\partial x_j} = \alpha \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\alpha (\mu + \mu_t) \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] - \text{D}u_i + M_i \end{split}$$

 $\label{eq:alpha} \begin{array}{l} \alpha \ \equiv \mbox{volume distribution fraction of gas} \\ Du_i = \mbox{drag model} \\ M_i = \mbox{dispersion model} \end{array}$

Attendant terms for turbulence closure and energy equations

$$\frac{\partial \alpha \rho k u_{j}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\alpha \left(\mu + \frac{\mu_{t}}{P r_{k}} \right) \left(\frac{\partial k}{\partial x_{j}} \right) \right] + P - \alpha \varepsilon + \text{Other terms}$$

$$P = \frac{\partial}{\partial x_{j}} \left[\alpha \mu_{t} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right] \frac{\partial u_{j}}{\partial x_{j}}$$

$$P = \frac{\partial}{\partial x_{j}} \left[\alpha \left(\mu + \frac{\mu_{t}}{P r_{\varepsilon}} \right) \left(\frac{\partial \varepsilon}{\partial x_{j}} \right) \right] + \frac{C_{1} \varepsilon}{k} P - \frac{C_{2} \alpha \varepsilon^{2}}{k} + \text{Other terms}$$

 $\frac{\partial \alpha \rho h_0 u_j}{\partial x_j} = \text{viscous diffusion} + \text{turbulent diffusion} + \text{viscous work} +$

interfacial heat transfer + Other terms

Approximate Grid Size and Relative CPU Time Per Element @ Re_{τ} =540

Method	Grid Requirements	Relative CPU Time	Meshing Complexity
DNS ¹	O(10 ⁷)	1.0	High
Sublayer resolved RANS ²	O(10 ⁶)	10 ⁻³	High
Immersed Boundary Method ³	O(10 ^{4, 5})	10 ^{-4, -5}	Medium ⁴
DERM ²	O(10 ³)	10-6	Low ⁵
k ⁺ based parametrization	O(10 ³)	10 ⁻⁶	Low

⁴Spatially precise element geometry is required for cut cell

¹Chan, JFM, 2015 ²Present ³Estimate

⁵Spatial distribution of volume fraction, C_D , C_{TD} required

- Chan 2015 JFM studied numerous sinusoidal roughness morphologies in pies at varying Re_{τ} .

- Ideal calibration case for DERM:
 - Can be modelled in RANS using a **single** roughness element and cyclic boundaries
 - Trig functions likely to be AM shape family members
 - Symmetry of sin/cos enable limit behavior enforcement (smooth wall, porous wall, "true" sand grain roughness)

DERM

• Chan Pipe 20_141

Wall pressure, axial velocity contours along streamwise stations Wall pressure, vertical velocity contours along streamwise stations

Wall pressure, turbulent kinetics energy contours along streamwise stations

• Chan Pipe 20_141, Comparison of DNS, sublayer resolved RANS and DERM

Publications

APS: M32.00002 **Title:** Direct Numerical Simulation of Additively and Conventionally Manufactured Internal Turbine Cooling Passages

ASME Paper Number: GT2019-90931 **Paper Title:** Flow in a Scaled Turbine Blade Cooling Channel With Roughness due to Additive Manufacturing

ASME Paper Number: GT2020-14809 **Paper Title:** Flow in a Simulated Turbine Blade Cooling Channel With Spatially Varying Roughness Caused by Additive Manufacturing Orientation

ASME Paper Number: GT2020-15630

Paper Title: Distributed Element Roughness Modeling of Additively and Conventionally Manufactured Turbine Coolant Passage Flow and Heat Transfer

Journal of Fluids Engineering

Students on Project

- Sam Altland
 - Penn State, Mechanical Engineering
 - Passed PhD Candidacy Exam September 2020, most course work complete
 - Spent Summer 2018 and Summer 2019 at GE Global Research as an intern developing experimental protocols for additively manufactured passages.
- Emily Cinnamon
 - Baylor University, Mechanical Engineering
 - M.S. Thesis scheduled for December 2019
 - Performed x-array hot-film measurements in RIFT
- Gabriel Stafford
 - Baylor University, Mechanical Engineering
 - Began M.S. studies in Summer 2019
 - Working on infrared heat transfer system and validation measurements

Summary and Current/next steps

- Significant enrichment of RIFT database
 - 8 surfaces/combinations (top/bottom) thereof, including smooth and "surrogates"
 - 2-sensor hot film profiles + $\Delta p \rightarrow f$
 - Serves a validation basis for modeling
- RANS modeling of each of the combinations at $\text{Re}_{D} \cong 60,000$:
 - Year 1 results against upskin Hastelloy better than average: only 6/8 configurations to date match *f* within 20%
 - Mean velocity profiles fairly accurate although $\tau_{\rm w}$ has aforementioned discrepancies
 - Serves as a local supplement for DERM comparisons

Summary and Current/next steps

- DERM development is showing excellent promise:
 - Suite of DNS comparisons with "conventional" drag and dispersion modeling
 - Far more efficient than any volumetric RANS modeling approach \cong same as surface parametrization
- Heat transfer coming soon!
 - RIFT
 - RANS
 - DNS/LES
 - DERM

Year 1 Activities and Progress Test article configuration build and characterization

Arithmetic mean roughness

$$R_{a} = \left[\frac{1}{N_{P}}\sum_{i=1}^{N_{P}}|Y'|\right]$$

root-mean-square roughness height_{R_q} = $\left[\frac{1}{N_P}\sum_{i=1}^{N_P} (Y'^2)\right]^{\frac{1}{2}}$

Flack-Shulz eq sand height roughness

Stimpson eq sand height roughness

Streamwise autocorrelation

skewness, $Skw = \frac{1}{R_q^3} \left[\frac{1}{N_P} \sum_{i=1}^{N_P} (Y'^3) \right]$

Statistical and relative characteristics of the surfaces investigated

Metric	Real_x102	Ellipsoid Analog	Elliptical Cone Analog
<i>R_a</i> (mm)	1.887	2.075	1.214
<i>R_q</i> (mm)	2.436	2.419	1.504
$k_{s,F-S}$ (mm)	6.933	7.045	6.965
k _{s,St} (mm)	30.85	34.24	18.73
λ _x (mm)	32.9	32.9	33.7
Skw	-0.276	-0.264	0.033

Year 1 Activities and Progress

Summary of friction factor measurements and CFD predictions

