Understanding Transient Combustion Phenomena in Low-NO_x Gas Turbines

Project DE-FE0025495, Oct. 2015 – Sept. 2018 (now Sept. 2019 with NCE) Program Monitor: Mark Freeman

PI: Jacqueline O'Connor, Ph.D.
Co-PI: Dom Santavicca, Ph.D.
Graduate students: Adam Howie, John Strollo, Seth Westfall
Undergraduates: Olivia Sekulich

Industry Partner: GE Research Keith McManus, Tony Dean, Fei Han

Mechanical Engineering Pennsylvania State University sites.psu.edu/rfdl/

- -Project motivation and approach
- -Review of previous results
- -Year 4 major results:
 - Intermittency quantification
 - Hydrogen effects
- -Conclusions and implications

- -Project motivation and approach
- -Review of previous results
- -Year 4 major results:
 - Intermittency quantification
 - Hydrogen effects
- -Conclusions and implications

Objective of the program is to *understand, quantify,* and *predict* combustion instability during <u>transient</u> <u>operation</u>

- Two major deliverables for the program:
 - Fundamental understanding of flow and flame behavior during combustion transients and mechanisms for transition to instability
 - 2. Development of a stability prediction or quantification framework

The transients will be quantified using three different metrics: *amplitude, timescale,* and *direction*

Varying the transient timescales allows for different processes to equilibrate during the transient, changing the path

- **Task 1** Project management and planning
- **—Task 2** Modification of current experimental facility with monitoring diagnostics and new hardware for transient control
- **—Task 3** Map combustor timescales at target operating points
- **Task 4** Design of transient experiments
- **Task 5** Fuel split transients (multi-nozzle combustor)
- **Task 6** Equivalence ratio transients (single- and multi-nozzle)
- **Task 7** Fuel composition transients (single- and multi-nozzle)
- Task 8 Data analysis and determination of prediction/quantification framework

Three types of transients are being considered in both multinozzle and single-nozzle combustors

Fuel-staging transients
 Multi-nozzle only

Equivalence ratio transients
 Multi- and single-nozzle

Fuel composition transients
 Multi- and single-nozzle

Experimental facilities include both a single-nozzle and multinozzle combustor, fuel splitting on multi-nozzle only

Hardware modification focused on a valve with linear actuation to control fuel flow transients for fuel-splitting studies

Single-nozzle combustor is created by plugging four nozzles and using a smaller quartz liner with the same dump ratio

- -Project motivation and approach
- -Review of previous results
- -Year 4 major results:
 - Intermittency quantification
 - Hydrogen effects
- -Conclusions and implications

Major Result #1: Fuel staging works both in axisymmetric and non-axisymmetric configurations

Culler, W., Chen, X., Peluso, S., Santavicca, D., Noble, D., O'Connor, J., (2018) "Comparison of Center Nozzle Staging to Outer Nozzle Staging in a Multi-Flame Combustor," ASME Turbo Expo

Major Result #2: Analysis of local flame dynamics shows that change in flame shape, dephasing drive stability suppression

Doleiden, D., Culler, W., Tyagi, A. Peluso, S. O'Connor, J., (2019) "Flame edge dynamics and[⊥]" interaction in a multi-nozzle can combustor with fuel staging" ASME Turbo Expo

Major Result #3: While instability decay is smooth, instability onset takes longer and is intermittent – direction matters!

Instability Decay

Instability Onset

Culler, W., Chen, X., Samarasinghe, J., Peluso, S., Santavicca, D., O'Connor, J., (2018) "The effect of variable fuel staging transients on self-excited instabilities in a multiple-nozzle combustor," Combustion and Flame, vol. 194, pg. 472-484

Major Result #4: Time-scale of a transient matters in the multinozzle combustor, and heat transfer likely plays a role

Culler, W., Chen, X., Samarasinghe, J., Peluso, S., Santavicca, D., O'Connor, J., (2018) "The effect of variable fuel staging transients on self-excited instabilities in a multiple-nozzle combustor," Combustion and Flame, vol. 194, pg. 472-484

Major Result #5: Most significant difference between the single- and multi-nozzle instability is transient timescales

Chen, X., Culler, W., Peluso, S., Santavicca, D., O'Connor, J., (2018) "Comparison of equivalence ratio transients on combustion instability in single-nozzle and multi-nozzle combustors," ASME Turbo Expo

- -Project motivation and approach
- -Review of previous results
- -Year 4 major results:
 - Intermittency quantification
 - Hydrogen effects
- -Conclusions and implications

Analysis of the multi-nozzle cases showed that many conditions displayed intermittency in the instability amplitude

High Intermittency

With three years of data, we were able to correlate key parameters to understand the source of the intermittency

Instability Amplitude

Damping Rate

20

Quantifying the thermoacoustic damping and driving of the combustor indicates strength of instability

Thermoacoustic damping is highly correlated to centerbody temperature, with long timescale cases having less damping

Intermittency is higher in cases with lower thermoacoustic driving, likely a result of the combustor thermal condition

 $k_{\mathcal{A}'\mathcal{A}'} = \exp(2\nu_n\tau)$

Westfall, S., Sekulich, O., Culler, W., Peluso, S., O'Connor, J., (2020) "Quantification of intermittency in combustion instability amplitude in a multi-nozzle can combustor" ASME Turbo Expo

- -Project motivation and approach
- -Review of previous results
- -Year 4 major results:
 - Intermittency quantification
 - Hydrogen effects
- -Conclusions and implications

Single-nozzle studies were done first to baseline performance and system stability was dependent on heat rate, %vol H_2

T _{in} =200 ^o C	xNG:xH ₂								
Ż (kW)	1.0:0.0	0.9:0.1	0.8:0.2	0.7:0.3	0.6:0.4				
		0.0039psi	0.0050psi	0.0122psi	0.1620psi				
41.47		435.61Hz	445.99Hz	450.79Hz	460.21Hz				
	0.0052psi	0.0078psi	0.0501psi	0.1741psi	0.1328psi				
45.62	509.15Hz	428.86Hz	<u>443.95Hz</u>	463.30Hz	488.64Hz				
	0.0066psi	0.0333psi	0.1474psi	0.1065psi	0.1665psi				
49.77	456.25Hz	441.70Hz	466.51Hz	484.14Hz	510.28Hz				
	0.0209psi	0.0412psi	0.2205psi	0.1798psi	0.0912psi				
53.92	471.38Hz	<u>459.25Hz</u>	<u>525.50Hz</u>	538.30Hz	540.55Hz				
	0.2709psi	0.2565psi	0.2230psi	0.1930psi	0.1503psi				
58.06	522.35Hz	537.46Hz	548.55Hz	564.68Hz	578.07Hz				
	0.2750psi	0.2387psi	0.2290psi	0.2109psi					
62.21	541.80Hz	557.06Hz	568.94Hz	578.69Hz					

Transient behavior is most sensitive to direction and amplitude; like NG results, timescale is not a factor

Strollo, J., Peluso, S., O'Connor, J., (2020) "Effect of hydrogen on steady-state and transient combustion instability characteristics" ASME Turbo Expo

Multi-nozzle stability has been mapped and transient tests are on-going to understand the role of flame interaction

T -2000C	Center Nozzle FPM Natural Gas / TPM H2					
1_in=200°C		Split				
p' rms [psi]	Heat Pate	100/0	90/10	80/20	70/20	60/40
peak freq [Hz]		0.0025	0 0025	0.0020	70/30	00/40
Outer Nozzle Heat Rate [kW]		1205 7	2/0 0	101 /		
Outer Nozzle Equivalence Ratio (NG Only)		1303.7 A1 A7EM	//0 12k/M	29 5761	- /	
	(41.47 kW)	0.5	0.48	0.46	xxx	xxx
		0.0025	0.0027	0.0032	0.0040	0.0021
		522.7	524.7	509.9	505.4	1930.3
		45.62kW	44.14kW	42.42kW	40.40kW	37.99kW
	(45.62 kW)	0.55	0.53	0.51	0.49	0.46
		0.0035	0.0025	0.0027	0.0030	0.0032
		578.0	1926.8	522.9	536.8	493.2
		49.77kW	48.16kW	46.28kW	44.08kW	41.44kW
	(49.77 kW)	0.60	0.58	0.56	0.53	0.50
		0.0245	0.0046	0.0085	0.0151	0.0052
		498.0	500.6	482.6	486.5	493.2
		53.92kW	52.17kW	50.14kW	47.75kW	44.90kW
the second se	(53.92 kW)	0.65	0.63	0.60	0.58	0.54
		0.2138	0.2138	0.0322	0.0636	0.0087
		534.9	526.2	500.6	498.3	509.6
		58.06kW	56.18kW	54.00kW	51.42kW	48.35kW
	(58.06 kW)	0.70	0.68	0.65	0.62	0.58
		0.2332	0.2299	0.0778	0.0862	
		536.6	537.3	519.2	. 512.2	
		62.21kW	60.20kW	57.85kW	55.10kW	
	(62.21 kW)	0.75	0.72	0.70	0.66	ХХХ

- -Project motivation and approach
- -Review of previous results
- —Year 4 major results:
 - Intermittency quantification
 - Hydrogen effects
- -Conclusions and implications

Key findings from this program will have implications for combustion instability research going forward

- Transient behavior is fundamentally different than steady-state behavior amplitude, direction, and timescale matter
 Implication: Both steady and transient studies are needed
- The impact of timescale on the final state after a transient event is mostly driven by its comparison to heat transfer timescales, likely due to its role in determining thermoacoustic damping
 - Implication: Conjugate analysis of combustion systems is useful
- Multi-nozzle systems display different behaviors than single-nozzle, particularly with respect to instability intermittency
 - Implication: Need more understanding of what drives differences
- System behavior with H_2 is not fundamentally different
 - Implication: Stability map changes, needs to be characterized

The work in this project has been widely disseminated to the academic and industrial communities – Published papers:

- Doleiden, D., Culler, W., Tyagi, A., Peluso, S., O'Connor, J., (2019) "Flame edge dynamics and interaction in a multi-nozzle can combustor with fuel staging," *Journal of Engineering for Gas Turbines and Power*, 141(10), p. 101009.
- 2. Doleiden, D., Culler, W., Tyagi, A., Peluso, S., O'Connor, J., (2019) "Flame edge dynamics and interaction in a multinozzle can combustor with fuel staging," *ASME Turbo Expo*, Phoenix, AZ.
- Culler, W., Chen, X., Samarasinghe, J., Peluso, S., Santavicca, D., O'Connor, J., (2018) "The effect of variable fuel staging transients on self-excited instabilities in a multiple-nozzle combustor," *Combustion and Flame*, 194, p. 472-484.
- 4. Culler, W., Chen, X., Peluso, S., Santavicca, D., O'Connor, J., Noble, D., (2018) "Comparison of center nozzle staging to outer nozzle staging in a multi-flame combustor," *ASME Turbo Expo*, Oslo, Norway.
- 5. Chen, X., Culler, W., Peluso, S., Santavicca, D., O'Connor, J., (2018) "Comparison of equivalence ratio transients on combustion instability in single-nozzle and multi-nozzle combustors," *ASME Turbo Expo*, Oslo, Norway.
- 6. Chen, X., Culler, W., Peluso, S., Santavicca, D., O'Connor, J., (2018) "Effects of equivalence ratio transient duration on self-excited combustion instability time scales in a single-nozzle combustor," *Spring Technical Meeting of the Eastern States Section of the Combustion Institute*, State College, PA.
- 7. Sekulich, O., Culler, W., O'Connor, J., (2018) "The effect of non-axisymmetric fuel staging on flame structure in a multiple-nozzle model gas turbine combustor," *Spring Technical Meeting of the Eastern States Section of the Combustion Institute*, State College, PA.
- 8. Samarasinghe, J., Culler, W., Quay, B., Santavicca, D. A., O'Connor, J. (2017) "The effect of fuel staging on the structure and instability characteristics of swirl-stabilized flames in a lean premixed multi-nozzle can combustor." *Journal of Engineering for Gas Turbines and Power*, 139(12), 121504.
- 9. Culler, W., Samarasinghe, J., Quay, B., Santavicca, D. A., O'Connor, J. (2017) "The effect of transient fuel staging on self-excited instabilities in a multi-nozzle model gas turbine combustor," *ASME Turbo Expo*, Charlotte, NC.

Forthcoming papers for ASME Turbo Expo 2020

- Westfall, S., Sekulich, O., Culler, W., Peluso, S., O'Connor, J., (2020) "Quantification of intermittency in combustion instability amplitude in a multi-nozzle can combustor" ASME Turbo Expo
- Strollo, J., Peluso, S., O'Connor, J., (2020) "Effect of hydrogen on steady-state and transient combustion instability characteristics" ASME Turbo Expo
- Howie, A., Doleiden, D., Peluso, S., O'Connor, J., (2020) "The effect of the degree of premixedness on self-excited instability," ASME Turbo Expo

- Penn State: Dom Santavicca, Bryan Quay, Janith
 Samarasinghe, Wyatt Culler, Dan Doleiden, Adam Howie,
 John Strollo, Xiaoling Chen, Seth Westfall, Matt Parmenteri,
 Jackson Lee, Steve Peluso, Ankit Tyagi, Olivia Sekulich
- **GE Research:** Keith McManus, Tony Dean, Janith Samarasinghe, Fei Han
- DOE/NETL: Mark Freeman
- College of Engineering Instrumentation Grant Program, Mechanical Engineering at Penn State

Questions?

Understanding Transient Combustion Phenomena in Low-NO_x Gas Turbines

Project DE-FE0025495, Oct. 2015 – Sept. 2018 Program Monitor: Mark Freeman

PI: Jacqueline O'Connor, Ph.D.
Co-PI: Dom Santavicca, Ph.D.
Graduate students: Adam Howie, John Strollo, Seth Westfall
Undergraduates: Olivia Sekulich
Industry Partner: GE Research
Keith McManus, Tony Dean, Fei Han

Mechanical Engineering Pennsylvania State University sites.psu.edu/rfdl/

