

University Turbine Systems Research Project Review Meeting 5 November, 2019 Improving NOx Entitlement with Axial Staging Contract DE-FE0031227

Dr. Scott Martin Eagle Flight Research Center Embry-Riddle Aeronautical University Daytona Beach, FL

Tommy Genova, Michelle Otero, Bernie Stiehl, Jonathan Reyes, Dr. Kareem Ahmed and Dr. Subith Vasu Mechanical & Aerospace Engineering Propulsion & Energy Research Laboratory Center of Advanced Turbomachinery & Energy Research University of Central Florida Orlando, FL

DOE University Turbine Systems Research Program PM: Dr. Seth Lawson Industry Advisors: Drs. Keith McManus and Carlos Velez, GE Research Center

- Introduction
- Objectives
- Experimental Facility
- Fuel Only Jet Preliminary Results
- Premixed Jet Preliminary Results
- PIV and TDLAS Measurements
- Modeling
- Year 3 Work

INTRODUCTION

Introduction

Axial Stage Combustion System

H.Karim et al. GE power, TurboExpo 2017

- Lean premixed combustion for the headend
- Axially staged fuel injection with short residence time
- Higher firing temperature

Minimize NOx with increasing turbine inlet temperature

- Gas Turbine OEM's are under pressure to increase efficiency without increasing emissions.
- Increasing turbine inlet temperature is one method to increase efficiency, but NO_x increases rapidly.
- NO_x is a function of peak flame temperature and residence time.
- By injecting some of the fuel late in the combustor (axial staging) it burns with a shorter residence time, minimizing the NO_x penalty.
- OEM's have tested full size axial staging designs at engine conditions, but are unable to obtain detailed measurements of the reacting jet-in-crossflow.

Axial Stage Combustion System Applications

- Power Generation
- Potential for Aircraft Engines

6

S. Martin et al., Siemens Energy, Orlando, FL

U.S. Patent 8,387,398, 2013

- Apparatus and method for controlling the secondary injection of fuel.
- Adds multiple fuel nozzles in the transition.
- Can be used to improve temperature pattern factor entering the turbine.

H. Karim et al., GE power, Greenville, SC

ASME Turbo Expo, 2017

- Lean-lean two stage combustion system
- Development testing in FA and HA class gas turbine
- Validation testing for 7HA.01 engine
- Premixers in a can (PM) vs Axial Fuel Staging (AFS)

OBJECTIVES

8

Develop a high pressure axial stage combustion test facility and explore novel configurations to implement axial staging with direct involvement of original equipment manufacturers (OEMs).

- Conduct experiments using a high pressure combustion facility.
- Tune rig headend to give similar NOx curve as current engines.
- Axial stage testing with Fuel/Air and Fuel/Diluent axial mixtures with various levels of premixing.
- Obtain detailed measurements of the burning jet to understand the design space and model validation.
- Axial Stage Modeling : Develop reacting jet-in-crossflow correlation and validate existing CFD capabilities.

EXPERIMENTAL FACILITY

- Three optical access windows for imaging diagnostics
- Interchangeable top plate for different jet geometries
- Wall flush jet injector
- ▶ <u>4 mm</u> and 12.7 mm jet injectors
- Pressure 5 atm.
- > Air flow rate 0.5 kg/s

Fuel Only Jet Preliminary Results

Optical Diagnostics

□ High-Speed CH* Chemiluminescence

- 10,000 frames per second
- FOV = 4.9 x 3.5 in
- 430 nm filter (used for methane jet)

Axial Stage Conditions

- □ Methane non-premixed jet
 - J = 10-115
 - $\Phi_{\text{inlet}} = 0.48-0.72$
 - T_{inlet}: 1260-1650°C
- Hydrogen non-premixed jet
 - J = 10-115
 - $\Phi_{\text{inlet}} = 0.58-0.72$
 - T_{inlet}: 1350-1650°C

Flame Stabilization – Hydrogen Non-premixed Jet

Crossflow Equivalence Ratio

J is momentum flux ratio

- Lower temperature inlet conditions burn further upstream and wider
- Leeward and windward flames
- □ Leaner crossflow provides more oxygen

Flame Stabilization – Hydrogen Non-premixed Jet

□ Momentum flux ratio

- Crossflow $\Phi = 0.58$
- All flames lifted
- Lower momentum flux ignites the same and burns slower
- Higher momentum flux leads to better oxygen entrainment

Flame Stabilization – Methane Non-premixed Jet

Crossflow Equivalence Ratio

- J = 115 (top) J = 10 (bottom)
- Leaner flame burns further upstream
- Leeward shear layer flames
- □ Leaner crossflow provides better oxygen entrainment

Flame Stabilization – Methane Non-premixed Jet

□ Momentum flux ratio

- Crossflow $\Phi = 0.58$
- Wall jet does not burn in leeward side but on windward side
- Wall jet not stable experiences blow-off
- Higher momentum flux entrains enough oxygen on both sides to remain lit

Jet Centerlines

Leanest Crossflow - Methane

 Leaner crossflow burned in shear layer on leeward side of jet

Jet Centerlines

Richest Crossflow – Methane

- Richest crossflow flame burned downstream of viewing section
- Jet trajectory matches non-reacting correlation

Leaner crossflow entrains more oxygen

- Higher velocity gradients (large J) entrain oxygen better and burn further upstream
- Two flames observed: stabilized jet with flame kernels constantly forming and flame propagation

RJIC penetrates further due burning in the wake relative to non-reacting

Premixed Jet Preliminary Results

Experimental Approach: Target Conditions

Results: Flame Shape Constant Crossflow

$\Box \text{ Crossflow Temperature: 1352}^{\circ} \text{ C} \qquad \text{Jet } \mathbf{\phi} = 4$

Rich jet approaches non-premixed jet behavior.

Crossflow Temperature: 1352° C

Jet $\phi = 4$

Jet $\phi = 8$

Results: Centerline Trajectory Comparison

□ Lefebvre jet trajectory correlations: $\frac{y}{d_j} = 0.82J^{0.5} \left(\frac{x}{d_j}\right)^{0.33}$ Where $J = \frac{\rho_j U_j^2}{\rho_m U_m^2}$ —Non-Reacting, Jet $\varphi=4$ —Non-Reacting, Jet $\varphi=8$ ---- Reacting, Jet $\varphi=4$ ---- Reacting, Jet $\varphi=8$ ---- Lefebvre ---- Lefebvre

CFD of Premixed CH4 Flames, 4mm Jet

- □ An increase of crossflow temperature reduces ignition time and flame liftoff.
- □ Autoignition process occurs on the leeward side of flame followed by flame propagation.
- Reacting jet in crossflow at higher pressure over penetrate compared to non-reacting jet.

PIV AND TDLAS MEASUREMENTS

Diagnostic Setup

CF

- Began PIV setup
 - Achieved proper seed density
 - Set delta T between laser beams
 - Finalize optical lens setup
- Start Formaldehyde PLIF setup
 - Timing
 - Optical lens setup

Inlet Velocity Profile

- $\succ \text{ Crossflow } \varphi = 0.575$
- Velocity profile at inlet of test section

)F

Thermocouple	Baseline	Total Mass	Total Main Air	Total Fuel	Total Air	Global Phi	Local Phi							
1316	1400	0.548	0.406	0.0176	0.531	0.575	0.750							
														1
Pressure (PSIG)	Split %	Axial Air	Main Air	Seeder Air	Bypass Air	Axial Air ROU	Main Air ROU	Bypass Air ROU	Seeder ROU	Axial PSIG	Seeder PSIG	Bypass PSI	J	Y(in)
60	20%	0.065	0.341	0.025	0.100	0.22	0.5625	0.24	0.089	151	350	154	15	2.1
60	22%	0.065	0.341	0.028	0.098	0.22	0.5625	0.24	0.1	151	320	163	15	2.1
60	25%	0.065	0.341	0.031	0.094	0.22	0.5625	0.24	0.1	151	367	156	15	2.1
60	27%	0.065	0.341	0.034	0.091	0.22	0.5625	0.24	0.1	151	398	151	15	2.1

Beer-Lambert Law for Species Detection $\alpha = -\ln\left(\frac{I}{I_0}\right) = \sum_{i} \sum_{j} S_{ij}(T) X_j P L \phi_{ij} \left(\nu - \nu_{0}_{ij}\right)$ **Raw Sensor Data** Test Cell **HITRAN/HITEMP/PNNL** Databases, UCF Lab I_0 PCB/CTAP -or- TDLAS ϕ_i, P, T, X_i Hardware Constraint/Constant **Processed Sensor Data** $I = Transmitted Intensity\left(\frac{W}{cm^2 srHz}\right)$ ϕ_{ii} = Lineshape Function (cm) $I_0 = Incident Intensity\left(\frac{W}{cm^2 srHz}\right)$ v = Optical Frequency (Hz) $S_{ij} = Linestrength\left(\frac{cm^{-2}}{atm}\right)$ $v_{0_{ii}}$ = Line Center Optical Frequency (Hz) T = Static Temperature (K)

i = *Quantum Transition*

j = Atomic/Molecular Species

 $X_i = Mole Fraction$

L = Path Length (cm)

P = Static Pressure (atm)

- Initial measurements (top image) utilized a fixedwavelength, direct absorption approach to measure water & temperature.
- Two wavelength multiplexed, pitched through combustor, then demultiplex in the catch box using diffraction gratings.
- Entire system required continuous purge with dry N₂ and cooling, so the equipment did not overheat (outside measurements).
- New approach (bottom image) will utilize wavelength-modulation-spectroscopy (WMS).
- This approach simplifies demultiplexing, eliminates the number of optical surfaces (for water to condense on), and requires only one detector. The system is smaller, simpler, and less sensitive to noise.
- Thermal electric coolers (TECs) will be employed to regulate equipment temperatures.

MODELING

CFD with Star CCM+

A STORE OF CALL OF UNIT

- Symmetric jet-in-crossflow axial stage geometry
- Structured, locally refined mesh with (1–50) E6 cells
- Computational Cost: 1000-5000 datacenter hours

• Reactive Domain:

A) Detailed Chemistry

- **B)** Flamelet Approach
 - Non-premixed: Steady Laminar Flamelet
 - Partially Premixed: FGM with Turbulent Flame Closure
 - Premixed: FGM with Coherent Flame Model

CFD of Non-Premixed CH4 Flames, 4mm Axial Jet

Axial Stage: NO_x Emission CFD prediction and comparison with literature data

Preferred: Detailed Chemistry Model Poor: Flamelet + Thermal NO_x Model

Unheated 4mm jet, control parameters to *accelerate* local flame ignition:

Windward branch	Lee-side branch
$\dot{m}_{CH4}^{crossflow}\downarrow$	$T^{crossflow}$ \uparrow
$w_{O2}^{crossflow}$	$w_{O2}^{crossflow}$ \uparrow

Combustion instabilities visible in the windward flame branch

CFD of Partially Premixed CH4 Flames, 4mm Jet

40

W_{CH^*} @ z=0 [CFD] and CH* Chemi [Exp.]

Jet Penetration

Divided flame

- □ Perform flow field analysis using particle image velocimetry (PIV)
- □ Study flame structure through PLIF
- □ Vary levels of partially premix in axial jet
- \square Explore pressure effect on NO_x
- Obtain NO and CO emissions with Tunable diode laser absorption spectroscopy (TDLAS)

Questions

