

CHANGEING A CHANGEIN POWER

DOE NETL University Turbine Systems Research Meeting – November 5, 2019

Paul Browning President and CEO

Americas Market Dynamics

The future is natural gas, renewables, and storage in the Americas

Renewable Generation

Economics, subsidies, and policy drive renewable installations for the foreseeable future

POWER SECTOR CARBON INDEX

Created By The

Carnegie Mellon University

Scott Institute for Energy Innovation

"The switch from coal to natural gas, and a 75% increase in renewables generation, are the two largest factors contributing to the reduction in emissions intensity"

LCOE is now \$41/MWh for a 50/25/25 split of gas, wind & solar

Announced Retirements and Distressed Assets

- Western US has retired most of their coal plants
- Eastern and mid-continent US still has a lot of coal to retire
- 19.1 GW of announced retirements
- 73.3 GW of distressed assets

Curtailments and Negative Pricing Signal the Need for More Storage

CAISO wind and solar curtailments hit record high in May 2019

Source: CAISO Data compiled June 6, 2019

Energy Storage Technologies

Flexible Technologies For Multiple Uses

California surplus and deficit patterns under a 100% renewable energy scenario

Accumulated surplus during the year equals 35.9 Million MWh, or roughly 14% of the California's annual electric usage.

To contain that much energy at peak storage time :

- A peak storage system equivalent in instantaneous capacity larger than the generating capacity of the entire US electric grid
- Assuming \$80/kwh (80% lower than where it is today) - the total cost of such a battery storage system would be \$2.9 trillion
- California's annual GDP is \$2.7 trillion.

Source: Armond-Cohen (Clean Air Task Force) Testimony: Building Americas Clean Future

Advanced Clean Energy Storage (ACES) Project Delivers a Complete Solution

The Evolutionary Path to 65%+ Combine Cycle Efficiency

T-Point 1 1997 (G) / 2011 (J) COD

July 2019

*Actual Operating Hours (AOH) as of November 2019

Larger Operating Range with High Efficiency Gas Turbines

- Increased flexibility reduces fuel costs and avoids starts / stops when integrating with renewables
- Normal operational range is from 100% to MECL (Minimum Emissions Compliant Load)
- MECL is typically 50% GT Load
- MHPS-TOMONI Very Low Load (VLL):
 - Expanded range: emissions compliant continuous ramping ~ 40%-100% load
 - Very low operational point @ ~20% GT load and emissions compliant

Operational Range

US Patent number : 9,399,927, Dated Jul. 26, 2016

MHPS Renewable Hydrogen Fueled Turbine

100% Hydrogen Fuel = **Zero CO₂ Emissions**

© 2019 Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Thank You