

Corrosion Issues in Advanced Coal-Fired Boilers FEAA116 (June 2014 – 2018)

B. A. Pint, J. M. Kurley, J. Jun, S. S. Raiman

Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6156 USA

Presentation for 2019 Crosscutting Research Project Review Meeting April 10, 2019

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgments

- G. Garner, M. Stephens, M. Howell oxidation experiments
- T. Lowe SEM, image analysis
- T. Jordan metallography, hardness
- D. Leonard EPMA
- A. Willoughby, R. De Las Casas Aranda, S. Pearson water loop
- Special thanks for shot peening and steam oxidation tasks:
 - American Electric Power (commercial 304H tubes)
 - EPRI (J. Shingledecker, I. Wright, S. Kung)
 - Barry Dooley (Structural Integrity Assoc.)
 - Steve Paterson (PIKA Solutions)

Project is studying corrosion issues relevant to current and advanced boilers

- Goals and Objectives
 - This project is addressing critical corrosion & environmental effects issues in current and future coal-fired boilers focusing on the water-steamside for waterwalls and superheaters
- Milestones
 - FY17
 - Complete final report on shot peened stainless steel oxidation (3/31/17, complete 2019)
 - Compare oxide microstructure formed on steam at 1 & 200 bar (6/30/17, complete 8/2018)
 - Demonstrate in-situ crack growth measurements in 200°C water (9/30/17, delayed)
 - FY18
 - Publication comparing crack growth behavior of 2.25 & 9%Cr in flowing water (6/18, delayed)
 - Report on the effect of pressure and water chemistry on oxide scale growth (9/30/18, writing)
 - Complete report assessing current importance of oxide scale exfoliation (9/30/18, complete)

Science approach to "real world" corrosion issues

- Task 1: Steam oxidation
 - Study of baseline alloys and shot-peening "solution" at 550°-650°C
- Task 2: Stress corrosion cracking
 - 21/4 %Cr waterwall steels: Grades 22, 23, 24
 - Significant issue in new boilers
 - Need for more detailed understanding
- Task 3: Effect of pressure on corrosion
 - Steam-side difference between laboratory and field
 - EPRI: does water chemistry also play a role?
 - Fire-side effects

CAK RIDGE

- SPOC: staged pressurized oxy-combustion (with Wash. U @ St. Louis)
- CO₂ effects from related project FEAA123

Cracks in transversal direction

"USC" John W. Turk Plant solution (commissioned 2013)

"Ultra-supercritical" coal-fired steam plant by B&W/AEP in Fulton, AR

- 600MW, ~39% LHV efficiency
- \$1.8billion (\$2.8b?)
- Steam: 599°/607°C SH/RH 25.3MPa (1110/1125°F)
 - Eddystone (1960): 613°C/34.5MPa
- Superheater: shot-peened 347H - 17.5Cr-10Ni-0.5Nb-1.5Mn-0.4Si-0.07C

Task 1: Why focus on shot peening?

- Scale exfoliation is the main driver for this task
 - H₂O-accelerated oxidation of steels (steam-side)
 - Simultaneous spallation of thick oxide
 - Tube failures & erosion damage
 - Costs: unplanned shutdowns, mitigation
- Shot peening of austenitic tubes
 - Industry standard to address exfoliation
 - Reduced scale growth: avoids exfoliation issue
 - Limited understanding of benefit and procedure

TP304H 22,0000 h

Shot peening increases the near-surface dislocation density which increases hardness and Cr diffusivity

Recent EBSD Electron Back Scattered Diffraction

ASME-specified 1100°C annealed U-bend

Several options for steam exposures

Tube furnace: 1 bar 500-h cycles

Standard procedure

High purity Ar-bubbled, filtered water with conductivity <0.1 μ S and <10 ppb O₂

Final results assembled on two 304H tubes for publication

CAK RIDGE

9

Characterization completed for publication

10 **CAK RIDGE** National Laboratory

Some drop in hardness at highest temperatures

304H Tube #1

304H Tube #2

11

Task 2: stress corrosion cracking

- 2.25%Cr waterwall steels: Grades 22,23,24
 - High strength steels are susceptible
 - Including 9Cr steels (Grades 91,92)
- significant problem for new boilers in US (T23) and EU (T24)
- Stress-environment interaction: 25°-300°C
- Jones test to apply stress (complicated)
- prior results in aerated and deaerated water

	Test Condition				
Alloy	As Received		Normalized		
	Aerated	Deaerated	Aerated	Deaerated	
T23			V		
T24			V		
T92			V		

Cracked

1st water loop built to have better environment control

Recirculating water system - based on GE systems

200°C autoclave

Simulate actual fossil environments with controlled pH and pO₂ levels

Experiment redesigned due to issues with autoclave/electrode: Electrochemical noise measurement will detect the potential transient(s) associated with crack initiation as O₂ increased

14

Specimens being prepared for experiment this quarter

Previous Jones test results with increasing dissolved oxygen (DO) in 200°C water

CAK RIDGE

15

Increasing DO				
Quenched Alloy	Stagnant deaerated (~0 ppb DO)	Circulating w/ 50 ppb DO	Circulating w/ 100 ppb DO	Stagnant aerated (~8400 ppb DO)
T23	No crack	No crack	No crack	Cracking
T24	No crack	No crack	Cracking	Cracking
T91	No crack	Cracking	Cracking	Cracking

T24 and T91 selected due to their cracking susceptibility

T24 steel				
Vickers Hardness (Hv)				
ASTM	Measured			
standard	after quenching			
265	455			

~72% increase in hardness

Task 3: effect of pressure (adding water chemistry)

- Steamside
 - steam oxidation field-lab disconnect
 - field (high pressure) ≠ lab (typically 1 bar)
 - need uniform test procedure to study
- Fireside
 - for Staged-Pressurized Oxy-Combustion (SPOC)
 - previous work with Washington Univ. (St. Louis)
 - R. Axelbaum and B. Kumfer

Figure 2 Intercomparison of specific mass change measurements on T92 martensitic steel after exposure to steam for up to 2000 h at 600° C (after [4]).

Partnered with EPRI to go supercritical (650°C/27.5MPa)

- 1L alloy 625 autoclave
- Temperature up to 650°C
- Pressure to 27.5 MPa (4000 psi)
- Controlled & monitored water chemistry
 - Purified water loop for start
 - <0.06 µS/cm
 - UV, deionization, gas sparging
 - pH controlled by ammonia addition
 - Novel ammonia and hydrazine injection
 - Sensors in and out of autoclave

Loop completed in Spring 2018

500-h cycles: 1L volume restricts number of specimens

Issues resolved with: Heater Gasket Back pressure regulator

Test matrix:

	AVT	OT
550°C	1,000 h	1,000 h
650°C	1,000 h	1,000 h

All volatile treatment (AVT) < 10 ppb O_2 Typical for sub-critical Oxygenated treatment (OT) 50-150 ppb O_2 Typical for super-critical Oxide to prevent erosion

Differences in mass change observed at 550°-650°C comparing 1 and 276 bar

T93: 84wt.%Fe-8.9Cr-**3.1Co-3.1W**-0.5Mn-0.2Si-0.2V-0.1Ni-0.06Nb-0.09C Super 304H: 67Fe-18.8Cr-8.4Ni-**2.8Cu**-0.8Mn-0.3Si-0.5Nb-0.3Mo-0.09C-**0.11N**

T93: 1000h 650°C 276 bar vs 1 bar

Hematite in 1 bar steam

Mass change: 19.0 mg/cm²

Mass change: 16.7 mg/cm²

Mass change: 23.3 mg/cm²

Super 304H: 1000h 650°C 276 bar vs 1 bar

L2 (FeO_x layer) spalled after first cycle in all cases

OT: Hematite in L2?

Mass change: -2.0 mg/cm²

Mass change: -1.7 mg/cm² Mass change: -3.1 mg/cm²

Super 304H: 1000h 650°C 276 bar

OT: Hematite in L2

Inner oxide (L1): slightly thinner oxides formed in AVT compared to OT

Plot (~30 measurements):

- Median value marked
- Whiskers: Min/max
- Box: 25%-75% values

Project has addressed several issues

- 1. Quantify shot-peening benefit on 304H
 - Completed 10-15 kh exposures at 550°-650°C
 - Compared to polished coupons
 - Manuscript drafted for journal submission
- 2. SCC issue in current waterwalls
 - Redesigned for electrochemical noise monitoring
 - Experiment prepared to identify critical cracking O content
- 3. Effect of pressure on steam oxidation
 - Matrix complete: 276 bar, 550°/650°C, two O₂ levels
 - Final report being completed

CAK RIDGE

• Expecting to complete all tasks in 2019

Backups

Industrial collaborations

- Strong collaboration with EPRI
 - EPRI Atlas

CAK RIDGE National Laboratory

26

- EPRI shot-peen study
- EPRI water loop project (\$125K in late 2016)
- Shot-peened material from American Electric Power
 Two 304H tubes using commercial process

Relation to other relevant projects/activities

- Steam testing performed for FEAA114 and AFA/CAFA development
- Legacy coal ash testing performed for FEAA114
- Effect of pressure also considered in CO₂ studies (FEAA123)

550°C: changes observed between 1 and 276 bar (OT)

Several options for steam exposures

Tube furnace: 1 bar CO₂ 500-h cycles

Standard procedure

"Keiser" rig: 500-h cycles, 1-43 bar

Autoclave: 275 bar water 500-h cycles

1L volume restricts exposure

Pressures of 1-43 bar

High purity Ar-bubbled, filtered water with conductivity <0.1µS and <10 ppb O₂

Completed 15,000 h of testing

- Tube sections removed at various times
- Polished alloy coupons for comparison
 - Gr.91
 - Gr.92
 - THOR
 - VM12
 - Gr.93 (new CSEF steel)
 - CPJ7 (started in 2018)

CAK RIDGE

National Laboratory

29

Dramatic benefit of shot peening 304H

- Fe-18.3wt.%Cr-8.6Ni-1.8Mn-0.3Si-0.3Mo
- Effect starting to fade at 650°C
- Additional exposure running at 550°C
- Final characterization in progress

10,000 h exposures

1 Specimen: shot peened ID machined OD polished "cut" sides (like coupon)

Raiman: loop architect

31

pH is controlled with ammonia addition

32 **CAK RIDGE** National Laboratory