Recovery of High Purity Rare Earth Elements from Coal Ash

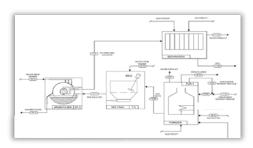
2019 Annual Project Review Meeting for Crosscutting, Rare Earth Elements, Gasification, and Transformative Power Generation

DE-FE-0031529

Rick Peterson Darwin Argumedo Kathryn Johnson Battelle Memorial Institute, Columbus, Ohio

Ryan Winburn Joseph Brewer Cameron Davies Rare Earth Salts, Beatrice, Nebraska

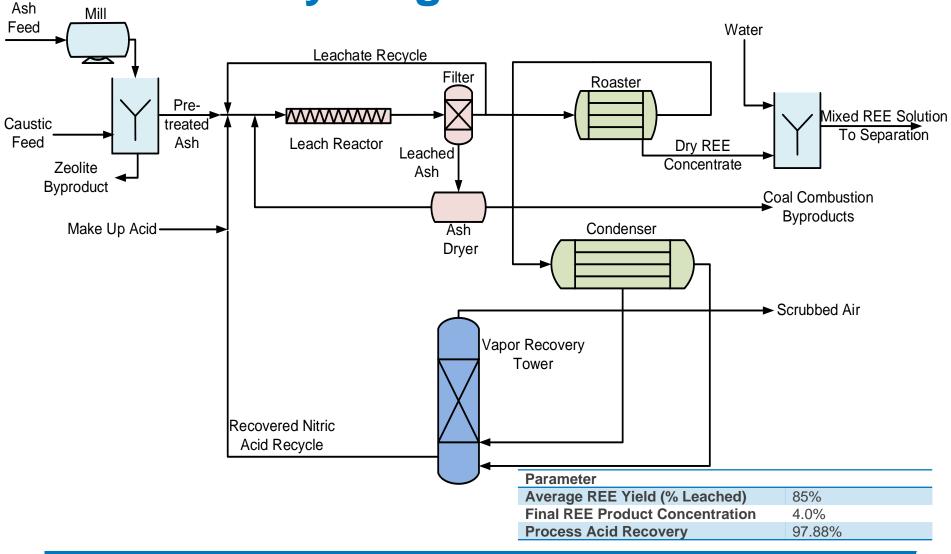




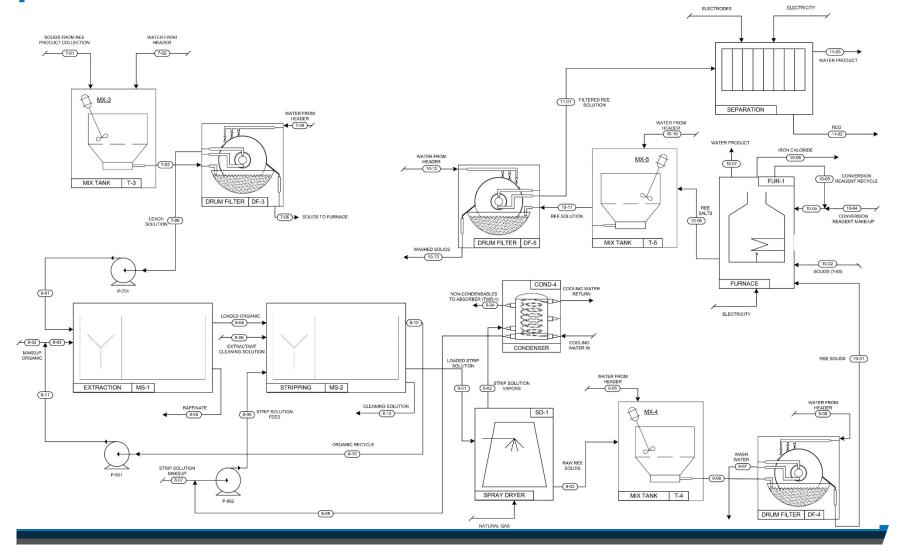
Process Description

Key Results

Next Steps

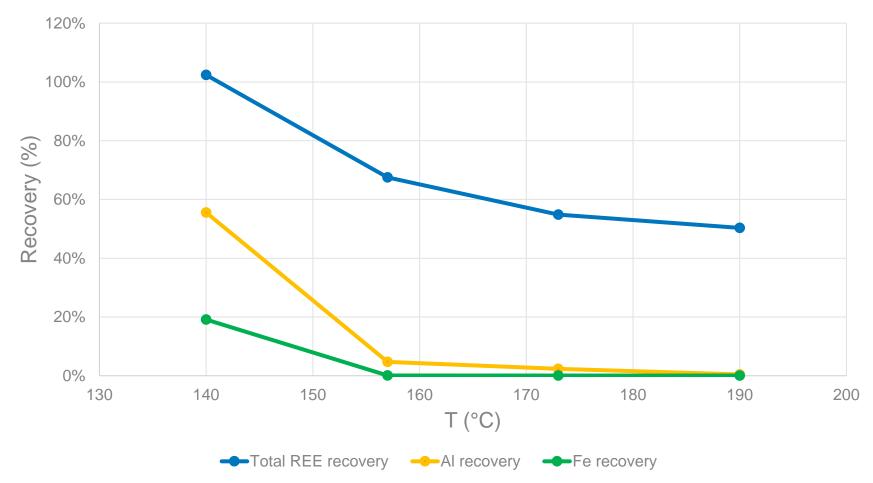


Process Description



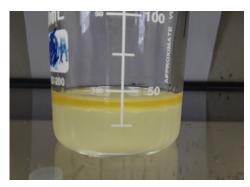
Acid consumption is reduced by thermal recycling

Upgrading and purification will result in greater than 99% purity separated rare earth oxide products



Key Results

Roasting tests suggested that good separation can be realized between REE and base metal contaminants


Concentrating the leach solution leads to a molten salt

• 58kg of PCC fly ash was leached in a batch reactor

The solvent extraction formulation required a modifier to achieve good phase disengagement

15% Cyanex 572 in aliphatic diluent

13.2% Cyanex 572 and 12% Isoecanol in aliphatic diluent

13.2% Cyanex 572 and 12% tributyl phosphate in aliphatic diluent

A surface response model was generated to understand REE extraction

• The design of experiment considered pH, mixing time, and TBP concentration

Test Number	Starting pH	Equilibrium pH	Mixing time (min)	Addition of TBP (Cyanex 572:TBP)	REE Recovery	REE Purity
1	3.28	2.51	20	13.2%:12%	69.7%	12.1%
2	2.52	2.34	20	14.1%:6%	69.2%	19.5%
3	2.52	2.48	1	14.1%:6%	24.1%	26.6%
4	3.28	2.86	1	15%:0%	37.3%	7.5%
5	4.03	3.06	1	14.1%:6%	75.2%	9.4%
6	4.03	2.73	10	13.2%:12%	78.0%	14.3%
7	3.26	2.65	10	14.1%:6%	79.6%	17.7%
8	3.26	2.65	10	14.1%:6%	79.2%	22.6%
9	2.51	2.43	10	13.2%:12%	65.6%	17.4%
10	4.02	2.74	20	14.1%:6%	84.3%	13.4%
11	3.27	2.64	10	14.1%:6%	77.8%	24.8%
12	2.49	2.37	10	15%:0%	35.7%	12.7%
13	3.26	2.74	1	13.2%:12%	65.7%	13.0%
14	4	2.79	10	15%:0%	71.2%	7.4%
15	3.26	2.56	20	15%:0%	58.9%	15.3%

Parameter	Model Predictions
Maximum REE recovery	~97% at equilibrium pH 3.06, mixing time 10.4 mins, and TBP of 0.55 (Cyanex 572:TBP = 13.9%:7.6%)
Maximum REE purity	~25% at equilibrium pH 2.46, mixing time 1 min, and TBP of 0.54 (Cyanex 572:TBP = 13.9%:7.5%)

The stripping tests left room for improvement

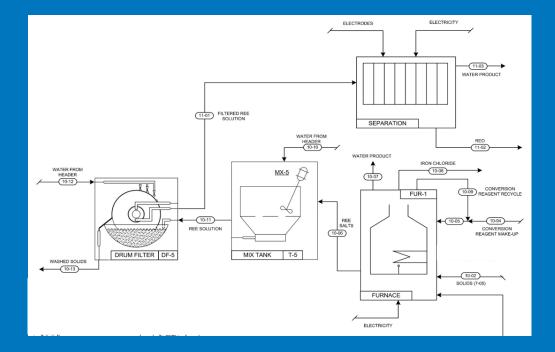
• Of the remaining 40-50% contaminants, over half is zinc and the balance primarily aluminum

Test Number	Starting pH	Equilibrium pH	Mixing time (min)	REE Purity
1	1.80	1.86	1	53.7%
2	1.80	1.87	10	53.7%
3	1.80	1.86	10	55.1%
4	1.31	1.37	10	52.6%
5	1.79	1.84	10	53.0%
6	1.31	1.35	1	53.2%
7	1.29	1.28	20	34.6%
8	1.29	1.21	20	37.4%
9	2.32	2.35	20	21.8%
10	2.31	2.41	10	24.7%
11	1.78	1.70	20	46.2%
12	2.31	2.40	1	20.5%
13	1.28	1.25	20	38.9%

Zinc leads to downstream processing challenges and has to be removed

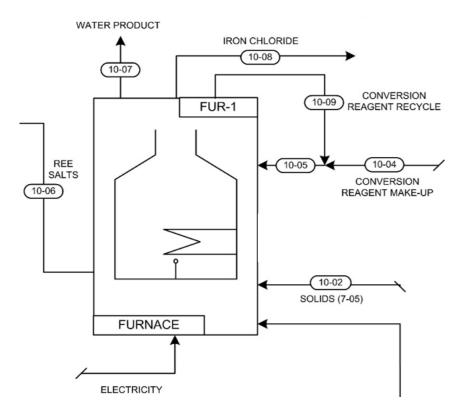
- Selective precipitation achieved high purity with tradeoffs in recovery:
 - Route 1: Two step process with a 96% pure REE product (~3.5% zinc) with an 80% average REE recovery (68% Y, 90% Nd/Pr, ~86% all other REE)
 - Route 2: Two step process with a 99% pure REE product (<0.8% zinc) with an average REE recovery of ~65%.
- A new extractant formulation showed good selectivity for zinc:

Element	% Extracted	
Sc	91.8%	
La	3.6%	
Се	4.1%	
Rest of REEs	0.98%	
Zn	25.1%	
Fe	29.4%	


At higher leach solution concentrations, the selectivity inverted

- With a higher PLS concentration, the new extractant still exhibited high selectivity, but extracted REE preferentially over zinc
- Stripping will be done with nitric acid then roasted and washed to remove contaminants and prepare for the conversion process

Species	% Extracted (single pass)
Sc	23.08%
Y	39.62%
La	93.02%
Се	93.11%
Pr	92.04%
Nd	91.00%
Sm	86.52%
Eu	83.17%
Gd	72.52%
Tb	70.99%
Dy	69.39%
Но	62.37%
Er	55.49%
Tm	40.67%
Yb	32.46%
Lu	21.32%
Total REE+Sc+Y	72.90%
Zn	6.78%
Fe	0%


Next Steps

Chloride conversion upgrades the mixed REE, allows for recovery of Sc, and can produce a ferric chloride byproduct

 Scandium containing solids from the initial roasting step are recovered in the conversion process

Separated lanthanum and neodymium products will be generated electrochemically

- Separated REEs have been generated from mineral sources and surrogate solutions to determine process parameters for coal sources
- Targeting 99%+ purity separated REE

800.201.2011 | solutions@battelle.org | www.battelle.org