### AOI 3: At-source Recovery of Rare Earth Elements from Coal Mine Drainage



Paul Ziemkiewicz, PhD Chris Vass, West Virginia University Aaron Noble, PhD Virginia Tech

> NETL REE Review Pittsburgh PA 10apr19 1430h

## Project Objective

#### ETD 53 DE FE0031524



# Develop and test a process to extract an enriched REE feedstock from raw Coal Mine Drainage

- **Sub-objective 1**. Extraction strategy Case A, low pH AMD: Maintain reducing conditions in feed water. Determine the effect of titrating pH from 3.0 to 4.5. Collect precipitate for analysis.
- **Sub-objective 2**. Extraction strategy Case B, net alkaline AMD: Maintain reducing conditions in feed water, explore electro-membrane extraction methods to separate REEs from matrix.
- **Sub-objective 3.** Process resulting precipitates through our Solvent Extraction facility to a target REE oxide purity in excess of 90% and evaluate performance versus the AMD sludge feedstock pathway.
- **Sub-objective 4**. Evaluate technical and economic advantages over at-source REE recovery versus the AMD sludge feedstock pathway.



## At-source REE concentration recovery

### Mobile plant

ETD53-AMD Concentrate Preparation

- A. Particulate removal (P&F)
- B. Gangue removal
- C. REE precipitation
- D. Dewatering





NATIONAL

## Integration with AMD treatment Plant



#### Process currently in development



Concentrate dewatering



### WVDEP's Omega AMD treatment plant

#### Treatment plant with clarifier

#### NATIONAL ENERGY TECHNOLOGY LABORATORY

### **Dewatering unit**





## Acid Leaching

#### **Filtration**

PLS generation and filtering are becoming routine and we are comfortable with the process.

Filtering was initially an issue; however, the pressure filter has solved 95% of filtering issues.

Continuing work to maximize REE recovery in the leaching process while rejecting gangue metals.





## Parametric SX Study

### Shushu Liu and Aaron Noble, Virginia Tech

- extraction of the four REEs with D2EHPA follows the order of Nd(III) < Dy(III) < Y(III) < Sc(III), which is consistent with their order of basicity [1].
- 2) extraction efficiency increases with increasing extractant concentration and the initial pH.
- 3) The addition of the modifier facilitates the extraction of REEs significantly without changing the extraction order of the four REEs with D2EHPA.

The optimum solvent extraction conditions were identified. While the study identifies a promising method for screening extraction conditions, further study with complex matrices will be undertaken to test the method's validity under realistic operating conditions.







## **Downstream Processing**

### **Solvent Extraction**

- HA = D2EHPA
- $M^{3+} = REE$  ion

U.S. DEPARTMENT OF

•  $MA_3 = D2EHPA/REE$  complex





## Solvent Extraction



Crud=Chalk River Unidentified Deposit origins in actinide separation

Conducted shakedown testing for all 3 feedstocks.

DLM & OM cause significant buildup of CRUD in the ALSX system resulting in poor mass balances and organic loss.

RS feedstock runs relatively CRUDfree.





## Solvent Extraction

### Automation of Mixing O:A Ratio

Currently, the O:A in the mixing chambers is controlled by a roller clamp that recycles fluid from the settler back to the mixer. The O:A ratio in the mixer is important to ensure proper mass transfer. This method is functional, but labor intensive and relies on analog adjustments.

Rockwell is working to install torque sensors on the mixers. This data will allow the roller clamps to be replaced by VFD controlled peristaltic pumps so the mixing ratio will be continually optimized.







## Concentration over multiple sites



#### Laboratory studies

|         | raw  | raw    | MREO g     | MREO grade      |        |
|---------|------|--------|------------|-----------------|--------|
|         | AMD  | Sludge | after trea | after treatment |        |
| site    | μg/L | g/t    | g/t        | %               | factor |
| AQ 2 1  | 352  | 513    | 20,772     | 2.08            | 40     |
| AQ 8 1  | 2353 | 405    | 31,594     | 3.16            | 78     |
| AQ 50 1 | 2119 | 1471   | 22,010     | 2.20            | 15     |
| AQ 51 5 | 738  | 2138   | 13,030     | 1.30            | 6      |
|         | 1391 | 1131   | 21,851     | 2.19            | 19     |



### Effect of raw water REE concentration [



Little effect on concentrate grade

2.0 1.8 1.6 Ж 1.4 pH 8 TREE wt % 1.2 Omega 1.0 XAQ-8 0.8 AQ-50 0.6 + AQ-51-5 0.4 AQ-3 0.2 0.0 200 400 600 800 1,000 1,200 0 1,400 1,600

TREE Concentration vs REE Weight %

Raw Water REE Concentration (ug/L)



## Integration with AMD treatment



Addition of flocculent increases recovery, decreases grade

- 2 Step pH adjustment vs 3 step
  - 3 step showed slight decrease in Al and large decrease in Fe concentrations
- Floc effect
  - Increase in REE recovery (97% vs 83%)
  - Decrease in grade 1.77% vs. 0.56%



### Solvent Extraction

### Precipitation

3 products have been produced from the 3 initial shakedown tests.

DLM @ 80% TREOOM @ 47% TREORS @ Analysis Pending

Working on precipitation procedures to standardize and maximize recovery and grade of REE product.



**REE OXIDE PRODUCT** 





### Concentrates/Dewatering

#### 0.59% MREO

| West Virginia University: DE FE 0031524 |                 |       |            |       |  |
|-----------------------------------------|-----------------|-------|------------|-------|--|
|                                         | Elemental conc. |       | Rare earth | trial |  |
|                                         | REE             | TREE  | REO        | TREO  |  |
| 1.36.50                                 | g/t             | %     | g/t        | %     |  |
| Sc                                      | 70.4            |       | 82.9       |       |  |
| Y                                       | 1,521.1         |       | 1,789.6    |       |  |
| La                                      | 243.7           |       | 286.7      |       |  |
| Ce                                      | 903.8           |       | 1,063.2    |       |  |
| Pr                                      | 147.0           |       | 172.9      |       |  |
| Nd                                      | 711.5           |       | 837.0      |       |  |
| Sm                                      | 207.5           |       | 244.1      |       |  |
| Eu                                      | 53.9            |       | 63.4       |       |  |
| Gd                                      | 324.5           |       | 381.7      |       |  |
| Tb                                      | 59.1            |       | 69.5       |       |  |
| Dy                                      | 355.5           |       | 418.3      |       |  |
| Но                                      | 69.6            |       | 81.9       |       |  |
| Er                                      | 188.5           |       | 221.7      |       |  |
| Tm                                      | 25.3            |       | 29.7       |       |  |
| Yb                                      | 141.5           |       | 166.4      |       |  |
| Lu                                      | 21.0            |       | 24.8       |       |  |
| total                                   | 5,043.9         | 0.50% | 5,934.0    | 0.59% |  |





### Scandium recovery



#### Modifier transfers Sc to solid phase

Without SX Modifier



With SX Modifier



Scandium Stripping Tests Sc Precipitate

|                 | Distribution of Sc(III), % |          |                              |  |
|-----------------|----------------------------|----------|------------------------------|--|
|                 | Organic                    | Emulsion | Aqueous<br>or<br>Precipitate |  |
| w/o<br>Modifier | 14.85                      | 61.15    | 23.99                        |  |
| w/<br>Modifier  | 24.96                      |          | 75.04                        |  |

 The addition of a simple modifier resolved BOTH the scandium stripping issue and an emulsion issue.



## Gangue rejection



**REEs** 

#### **Major metals**



17

## Mobile plant for field extraction



### Integrated with WVDEP's Omega AMD treatment plant





### Interior of mobile plant

#### Two plate and frame presses







## Project Objective



# Develop and test a process to extract an enriched REE feedstock from raw Coal Mine Drainage

**Sub-objective 1**. Extraction strategy Case A, low pH AMD: Maintain reducing conditions in feed water. Determine the effect of titrating pH from 3.0 to 4.5. Collect precipitate for analysis.

Process train developed and under testing

**Sub-objective 2**. Extraction strategy Case B, net alkaline AMD: Maintain reducing conditions in feed water, explore electro-membrane extraction methods to separate REEs from matrix.

Insufficient throughput with SLMs or adequate separation via redox/pH control: terminated

**Sub-objective 3.** Process resulting precipitates through our Solvent Extraction facility to a target REE oxide purity in excess of 90% and evaluate performance versus the AMD sludge feedstock pathway.

Process train developed and under testing

**Sub-objective 4**. Evaluate technical and economic advantages over at-source REE recovery versus the AMD sludge feedstock pathway.

Process train developed and under testing



## Summary of progress to date



Transition from laboratory to field scale studies

- A process pathway has been identified for the treatment of net-acid AMD. The process isolates and concentrates REEs and naturally captures scandium in a separate stream.
- Process has been tested at four AMD sites. Results range from 1.1 to 2.7% REE DW.
- The products from this process will be separated using solvent extraction (SX). Laboratory testing is now refining those SX processes.



## Risk: REO, SREO



#### High confidence

- Regional/local resource dimension
- Prediction based on site conditions
- REE distribution
- MREO grade > 80%

#### Low confidence

- Elemental separability through ALSX
- REO distribution through ALSX
- Processing costs
- Market
- Valuation



| Latort Ouandarios                    | OM precipitated from strip solution (elemental) |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|-------------------------------------------------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latest Quanualies                    |                                                 | g/t     |         | g/t     | <b>NENATIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALIONALHDNATHDNATHDNATHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHDHHDHHHHHHHHHHHHH</b> |
|                                      | Sc                                              | -       | Al      | 17,728  | <b>TL</b> TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | Υ                                               | 187,055 | Са      | 91,613  |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | La                                              | 7,977   | Со      | 127     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Sc, Co have high</li> </ul> | Ce                                              | 41,011  | Fe      | 41,559  |                                                                                                                                                                                                                                                                                                                                                                                                     |
| affinity for our                     | Pr                                              | 5,916   | Mg      | 136     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| extractant                           | Nd                                              | 30,172  | Mn      | 409     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| How to liborato                      | Sm                                              | 12,922  | Na      | -       |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Eu                                              | 3,839   | SO4     | -       |                                                                                                                                                                                                                                                                                                                                                                                                     |
| • What is the unknown?               | Gd                                              | 24,010  | Si      | 3,980   |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Tb                                              | 5,235   |         | 155,552 |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Dy                                              | 35,023  |         |         |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Но                                              | 7,116   | Th      | 14      |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Er                                              | 21,652  | U       | 62      |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Tm                                              | 3,246   |         | 76      |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Yb                                              | 17,336  |         |         |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Lu                                              | 2,141   | known   | 560,278 |                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                    | TREE                                            | 404,649 | unknown | 439,722 |                                                                                                                                                                                                                                                                                                                                                                                                     |

476,058

MREO



### Questions?



Paul Ziemkiewicz, PhD pziemkie@wvu.edu

Chris Vass crvass@mail.wvu.edu

Aaron Noble, PhD <u>aaron.noble@vt.edu</u>

Quandary Canyon