Feasibility of Recovering Rare Earth Elements from Thickener Underflows

by

R.-H. Yoon, A. Noble, and G.H. Luttrell

Department of Mining & Minerals Engineering Virginia Polytechnic Institute & State University Blacksburg, Virginia, 24061

2019 Project Review Meeting for Crosscutting Research for Rare Earth Elements April 9-11, 2019 Omni William Penn Hotel, Pittsburgh, PA

Analysis of Channel Samples Fire Clay Coal Seam

Total REE Content (ppm, dry whole sample basis)

H vs. L REE Ratio

USGS Coal Quality Data Base (Bryan et al. 2015)

REEs are mostly associated with kaolinite

USGS CoalQual Samples from PA, WV, KY, and VA

10.9 MM tons at 500 ppm cut-off grade

REE Grades in Kaolinite (Calculated, Bryan et al. 2015)

REE grades on clay are 5-6 times higher than whole coal.

Ion-Adsorption Clay (IAC)

South China

- "Weathered crust elutiondeposited rare earth ore"
- 0.05-0.3% REEs
- Physisorbed by double-layer force

Low-cost extraction process

- Desorbed by ion-exchange
- Precipitated by oxalic acid and roasted to REOs.
- □>80% of the world's HREEs
- >35% of total Chinese REE production

IACs in US? Bern et al, J. Geochemical Exp. 172, 29 (2017)

Liberty Hill, South Carolina

Stewartsville, Virginia

Upper Kittanning Coal, PA Ion-Exchange Leaching

□ Sample A

Top of the coal seam

□ Sample B

Just below Sample A

Mineral Matter in Coal: A Rich Source of HREEs

(Serendin and Dai, 2013)

HREEs have higher adsorbabilities on clay than LHRRs.

Fine Coal Cleaning in US

CUMULATIVE ASH, %

Thickener/Impoundment

10µm

HHS Pilot Plant

No binder

Leatherwood Thickener U/F

Artificial Ores

Chalcopyrite $(d_{80} = 4 \mu m)$

	C			
		Concentr	Cu Recovery	
Feed	Tailings	Two-Liquid Flotation	HHS ¹	(%)
22.07	0.06	27.8	34.11	99.9
12.82	0.18	24.3	34.14	99.3
4.18	0.06	22.27	33.86	98.9

$\Box \quad \text{Monazite } (d_{80} = 3 \ \mu \text{m})$

Duaduata	Weight REE (%)		E (%)
Products	%	Grade	Recovery
Conc.	3.14	62.57	93.1
Tail	96.86	0.15	6.9
Feed*	100.00	2.11	100.0

Ion-Exchange Leaching

Thickener U/F

• At 50°C

Lixiviant (m	Como	Feed			Solid Residue			REE
	(moles/l)	Ash	REE	Wt.	Ash	REE	Wt.	Recovery
		(%wt)	(ppm)	(g)	(%wt)	(ppm)	(g)	(%)
$(NH_4)_2SO_4$	0.5	92.03	234.58	30.0	90.85	232.05	29.2	3.7
А	0.5	92.03	234.58	30.0	90.01	198.79	28.1	20.6
В	0.5	92.03	234.58	30.0	89.51	227.96	29.2	5.4

□ Artificial Ion-Exchange Clay at 25°C

Lixiviant	Conc. (moles/l)	Feed		Solid Residue		REE	
		REE (ppm)	Wt. (g)	REE (ppm)	Wt. (g)	Recovery (%)	
$(NH_4)_2SO_4$	0.5	1812.5	15.0	726.8	14.9	60.1	
А	0.5	1812.5	15.0	932.9	14.9	48.7	
В	0.5	1812.5	15.0	1235.9	14.8	32.9	
С	0.05	1812.5	15.0	643.3	14.4	65.9	

Problem & Solution

Colloidal phase

Solution

XPS Spectra of La on Artificial IAC

XPS Spectra of a Mineral Matter of a Middling Sample

Implication

□ LTI Project (2014)

- Audited 15 coal beneficiation plants in Central Appalachia
- Fine coal refuse produced 1,313 TPY REE.

Table 5.1 Foundation of mass, ash and TEES for To cour processing factures.						
Stream	Mass TPY	Ash TPY	REE TPY	REE/Whole	REE/Ash	
Plant Feed	78,567,376	36,986,176	9,899	126	268	
Clean Coal	36,697,676	3,435,608	1,620	44	472	
Coarse Refuse	33,279,712	28,160,683	6,285	189	223	
Fine Refuse	8,589,993	5,227,936	1,3 <mark>13</mark>	153	251	

Table 3. Production of mass, ash and REEs for 15 coal processing facilities.

- Thus, each of the 15 plants produced 87 TPY REE.
- Multiplying this number with 248, the number of operating plants, gives 21,700 TPY
- Assuming 50% recovery, US beneficiation plants can produce 10,850 TPY REE.
- In 2018, US consumed 9,500 tons.

Comparison with Other REE Sources

HHS Mobile Pilot-Plant

Summary

- Clay minerals in coal are rich sources of heavy REEs.
- Clay minerals congregate to thickener underflows.
- Heavy and critical REEs can be readily recovered at low cost and with minimal disruption.
 - produce salable coal from waste streams
 - ~4 billion tons of pond fines can be an additional source
- XPS studies showed evidence for ion-adsorption clays in US coal byproducts
 - most likely in colloidal phase
 - makes IX leaching difficult
 - characterization and extraction studies ongoing