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Project Description and Objectives

» The overall goal of the proposed effort is to develop a small scale,
modular air separation unit providing 10-40 tons/day of high purity
oxygen to a 1-5 MWe gasifier at low cost and high efficiency

= Mixed conducting two phase material

capable of separating oxygen at 600- e
7OOOC. jfg; d de(;feted
= Planar membrane/support structure o-l ‘\"‘\:J ")x:: Ielecmns

high purity
0,

= Utilize the difference in oxygen partial =~ v
pressure across the membrane to drive
oxygen from air, no electrical energy Dopedceria [ LSM-20
needed for oxygen separation

pO, ~ 107 atm

—
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Background — Oxygen Separation

» Cryogenic Air Separation — mature development
= Low energy demand at high capacity (4000 T/day)
= Energy demand very high at low capacity (i.e 10-40 T/day)
= Very high purity (99+)

» Pressure Swing Adsorption (PSA) — mature
= Economical at low capacities (i.e. 300-400 T/day)
= Purity ~ 95%

» Polymer Membranes — mature

= Low purity (~ 40%)

» Ceramic Membranes — R&D
- High purity (99+), thermal integration AN RS T“m
= Can be economical depending on oxygen permeability =~ = *
= Examples: OTM and ITM 50.~10° o °
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Background — Ceramic Membranes

Planar Design

—

Planar vs Tubular Design

Hot
Compressad
Air

= Planar design

= Ease of manufacturing

= High surface area

» |ncreased sealing surface area

= Lower/medium temperature (600-700°C)

= Two phase composite membrane (c; and o)
= SOFC design experience at PNNL
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Background — Bilayer structure

Planar Membrane/Porous Support

Thin composi / R O At SRt Tl T~
posite membrane > S ax Ay Ao DX
(~ 10 um) Porous support (~ 0.5-1mm)
Composite membrane Porous Support
= Dense = ~50% dense
= High o, and o, = TEC match to membrane
= Compatible with glass seal = Mechanical integrity
* Inexpensive fabrication = Co-fired w/ membrane

= No electrodes

- Design will leverage SOFC stacks developed at PNNL
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Background — Ceramic Membranes

Thin composite membrane (~ 10 «m)

0, 0 0, 0,
‘ [ )
VoK R b 5 “ — 0'1 ‘\"‘.‘a v A & AIelem:nt:ons
2 - 4 _'_a" rok 02 02 02 02
L T e b O'i . Ge

Composite membrane
= Two phase composite

Material Selection
= |onic Conductor

= Similar TEC = YSZ
= Limited interaction during firing = [Doped CeO, |
" High o; phase = Electronic Conductor
= Sufficient o, phase = | Doped LaMnO,, LaFeO,
= Compatible with glass seal =i LSCF |
» LaCrO,
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Background — Dense Membrane

Preliminary Oxygen Flux Calculations

600°C 700°C
Doped Ceria  LSM-20 lonic Conductivity (S/cm) 0.018 0.039
Electrical Conductivity (S/cm) pO2 - air side (atm) 0.2 0.2
600°C - 100 pO2 - vacuum side atm 10" 10"
Oyt . 120 Thickness (um) 10 10
lonic Conductivity (S/
onic Conductivity (S/cm) 0, Flux (Alcmz) 34 81
e  0.018 -
oy oo ] Tons of O,/day 10 10
Cell area (sz) 420 420
Thermal Expansion Coefficient (10°°) 11.7 11.5 Cells/stack 100 100
# stacks required 8.99 (9) 3.72 (4)

—> # of stacks is < 10 for both cases which appears to be very
reasonable for a 10 ton/day modular ASU

—

Pacific Northwest
NATIONAL LABORATORY

8 Proudly Operated by Battelle Since 1965



Background — Porous Support

o  MgO + MgAlL0, (spinel)
/
e )
Je iy < MgO + MgALO, (spinel)
Porous sup‘porlt (~ .‘-1mm) g&l:: Aremaf; ﬁ“m‘ \ s
,_,_3@/'/
70— 100% MgAL0, (spinel)
Porous Support T e © 0T
= Two phase composite (Al,O, & MgO)
* Tailor the TEC to match membrane
= Mechanical support
= Use of fugitive phase if necessary
= Sintering aid, Y,0,
= Match shrinkage profile of membrane \37/
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Background — Glass Seals

Proposed Glass-Ceramic Seal

=
N

= Barium aluminosilicate glass - i el S0
= Modified with B,O;and CaO ... A il i 50
= Glass-ceramic : .
= TEC match to membrane e e T
= Minimal interactions 2 oola
= Extensively studied at PNNL £ |+

= Very stable up to 800°C Y8 ® @ W W W 65 i

- XRD’ SEM’ Thermal Cycles

= Thermal cycling

= SOFC tests o
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Background — Stack Design

Ceria/LSM

Porous support

«——— Corrugated 400 ss

Gas isolation plates

Oyoulet «— =L L1 1 1 M r1 r1r1r .
m

Glass seal

» Low cost 400 series stainless
punched to net shape & used
as manifold

= 400 stainless also used as gas
Isolation plate

= Barium aluminosilicate glass seal

» Low cost manufacturing methods “/

Pacific Northwest
NATIONAL LABORATORY

11 Proudly Operated by Battelle Since 1965



Experimental Procedure & Analysis Methods

Dense Membrane — V; (ionic conductor)
" Oionic and Oelectronic
= Chemical and microstructural stability
(XRD and SEM w/ EDS and EBSD)
= Dilatometry and sintered shrinkage

Porous Support — V; (MgO)
* Mechanical integrity
= Chemical and microstructural stability
(XRD and SEM w/ EDS and EBSD)
= Dilatometry and sintered shrinkage

Bilayers (membrane and support)
= Tape casting and lamination process
= Co-sintering for a flat, crack free sample

12
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Experimental Procedure & Analysis Methods

Oxygen Permeability Measurements

= Temperature

= Oxygen partial pressure

= Catalytic surface treatments
(if needed to improve surface
exchange kinetics)

—

membrane O,

AEALS IV - ~

Glass seal

Air in
{
{

1 ~7

iri 7 Pacific North t
Alrin AIr out Gas anaIySiS act le«:ﬂorug[ LAggg?FORY
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Project Update

Material Selection

Composite Membrane - V¢ (ionic conductor)

Electronic conducting phase lonic conducting phase
La, ;MNnO, (LM90) CeygSM,,0,
La, 75515 ,MnO; Cey 9Gdy 10,
La, 65T 4F€5C04,05™ Cey Gy ,0;

CeygSm,,0, w/ 1% Co (SDCC)

Support Structure - V¢ (MgO)
Al,O,

MgO

Y,0,

Carbon black

PMMA spheres

Pacific Northwest
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Project Update — Sintering SDCC/LM90

Membrane

Relative expansion, %

N O

1 1 |
[ole] (e)] ~

-10
-12
-14
-16
-18

End Member Sintering

—LM90
—SDCC

500 1000
Temperature, °C

1500

15

Composite Sintering

SDCC/LM90 (vol%)
Sintering 50/50 | 60/40 | 70/30
Temperature (°C)
1300 99+ 98.8 97.2
1400 99+ 99+ 99+
1500 99+ 99+ 99+
100

.‘? :/1 I

z

=

E 95 —8—50/50

g —— 60/40

FQ:U —e—70/30

=

90
1250 1300 1350 1400 1450 1500 1550
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Project Update — Phase Analysis SDCC/LM90 (70/30)

Membrane
25000
20000
[
15000
Z 1500°C
E
10000
1400°C
J M
5000 ® ’.
\1\1_.}\, “ .n L MJ-U\& 1300C j\}.k
[ )
| . | » L8y 93MnO;,
0 | | . . L | L | Ceo.ssmo.zozl

20 30 40 50 60 70 .
2 Theta

Limited interaction between LaMnO, and ceria during sintering —tific Northwest

at 1.300-1500°C. NATIONAL LABORATORY
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Project Update — Sintering SDCC/LM90 (SEM)

Membrane Composites sintered at 1400°C
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Project Update — Expansion, conductivity, and O, flux

Membrane
700-C
Membrane Component O |Geectronic| Oionic | |
(10°°) S/cm Alcm®
Lag oMnO; (LM90) * * - -
Lag 755rp ,MnOs 11.5 120 - -
Lag §Srg4Fe08C0g 203 14.3 400 0.05
CeggSmg 1,0, 11.7 - 0.04 -
Cep.9Gdg 10, 11.6 - 0.035 -
Ce5Gdg -0, 11.7 - 0.04 -
Ceg,sSmy,0, W/ 1% Co (SDCC) | * ; * ,
Composites
SDCC/LM90 (70/30) 11.7 * *

18
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Project Update —MgO/Al,O; Porous support

Support
Material Selection and of Interest MgO - ALO, Phase Diagram
density Melting
(g/cc) TEC(/°C) Point(°C)
MgO 3.58 13.5 ~2800
Al,03 3.99 8.8 ~2200
MgAl,O, 3.58 7.6 ~2150
YAIO, 5.35 ~2150
Y,0, sintering aid (~1-3%) ~2650

Composition of interest _
(MgO + MgAlLO,) \g?/
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Sheet1

						density (g/cc)		TEC (/°C)		Melting Point (°C)

				MgO		3.58		13.5		~2800

				Al2O3		3.99		8.8		~2200

				MgAl2O4		3.58		7.6		~2150

				YAlO3		5.35				~2150

				Y2O3		sintering aid (~ 1-3 %)				~2650

		Starting Composition						Final composition (weight %)								Final composition vol %)						Predicted a*

		% Al2O3		% MgO				% MgAl2O4		% MgO		% Al2O3				% MgAl2O4		% MgO		% Al2O3		(complete conversion)

		0		100				0		100		0				0.0		100.0		0.0		13.5

		10		90				14.3		85.7		0				14.3		85.7		0.0		12.7

		20		80				28.6		71.4		0				28.6		71.4		0.0		11.8

		30		70				42.9		57.1		0				42.9		57.1		0.0		11.0

		40		60				57.1		42.9		0				57.1		42.9		0.0		10.1

		50		50				71.4		28.6		0				71.4		28.6		0.0		9.3

		60		40				85.7		14.3		0				85.7		14.3		0.0		8.4

		70		30				100		0		0				100.0		0.0		0.0		7.6

		80		20				66.7		0		33.3				69.1		0.0		30.9		8.0

		90		10				33.3		0		66.7				35.8		0.0		64.2		8.4

		100		0				0		0		100				0.0		0.0		100.0		8.8

		* if dont achieve completed conversion of Al2O3+MgO to MgAl2O4 then expansion coefficient will be a little higher than predicted

								0		27.9329608939		0				27.9329608939

								3.9944134078		23.938547486		0				27.9329608939

								7.9888268156		19.9441340782		0				27.9329608939

								11.9832402235		15.9497206704		0				27.9329608939

								15.9497206704		11.9832402235		0				27.9329608939

								19.9441340782		7.9888268156		0				27.9329608939

								23.938547486		3.9944134078		0				27.9329608939

								27.9329608939		0		0				27.9329608939

								18.6312849162		0		8.3458646617				26.9771495779

								9.3016759777		0		16.7167919799				26.0184679576

								0		0		25.0626566416				25.0626566416
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Project Update — Sintering MgO/Al, O,

Support Composite Sintering
End Member Sintering MgO/Al,0; (vol%)
. Sintering 70/30 80/20
Temperature (°C)
© 1300 559 | 584
o
& O 1400 61.6 65.8
2 5 1500 86.4 93.9
(e
® 4
% ) —MgO 100
o —AI203 2 g9
= -8 5 —e—70/30
4&; :; 50 —e—30/20
zgg e éé 70
-12 _Es
~ 60
-14 &
0 500 1000 1500 50

1250 1300 1350 1400 1450 1500 1550
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Project Update - Phase Analysis MgO/Al,O, (70/30)

Suppo rt 25000

20000

15000

1500C

10000

Intensity
[ J
[ J

1400C

5000

- , , YAIO,
|

Al,0,

T T T | MqQ
40 50 60 70
2 Theta

= MgO and Alumina react to form spinel MgAl,O, during
sintering between 1300-1500°C.

» Alumina consumed in reaction, sintering aid (Y,0O,) forms
YAIO,.

o
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Project Update — Expansion and conductivity

Porous Support

700°C
Support a Oelectronic|  Oionic
(10°°) Siem /|
Al,O4 8.8 \ /
MgO 134 | -\ | /-
MgAI,O, (spinel) 7.8 - Y -
Composites / 1\
MgO/Al,0; (70/30) 11 | £ | \
MgO/Al,O; (80/20) 118 |/ - -\

22
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Next Steps/Concluding Remarks

Next Steps

» Complete physical, microstructural, electrical, and thermal property
evaluations of compositions of interest (membrane and support)

e Analyze oxygen permeability measurements <> surface treatments

» Tape cast and laminate bilayers (flat and crack free)

Concluding Remarks

» Preliminary results are encouraging and follow early predictions
* Oxygen permeability measurements and results are critical to minimize
number of stacks required to produce 10 tons/day of oxygen

—
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