

Evaluation of Laser-Based Analysis of REE in Coal-Related Materials

Sam Clegg, Ann Ollila, Adriana Reyes-Newell, Zhenghua Li, Hakim Boukhalfa, and George Guthrie

April 9, 2019

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Analytical Methods

- Laser-Induced Breakdown Spectroscopy (LIBS)
 - Elemental Analysis
 - Develop and Test Multivariate Analysis Calibration
 - Estimate Detection Limits
- Raman Spectroscopy
 - Mineralogical Analysis
- Field demonstration of a breadboard instrument
 - Designed from laboratory LIBS and Raman investigations above
 - No Sample Preparation Required

Laser-Induced Breakdown Spectroscopy (LIBS)

Aluminum

Basalt

Sirven et al., JAAS

Backpack

LIBS for the IAEA

LIBS and Raman Instrumentation

- LIBS instrument development started with Ocean Optics Spectrometers
 - Readout noise limited detectors
 - Not gated detectors
- ChemCam Instrument LIBS only
 - Based on Ocean Optics Spectrometer design, significantly better, more expensive detectors
 - Still not gated.
- LDRD DR Developed Raman-LIBS Spectrometer (RLS)
 - Same detectors used in ChemCam
 - Gated detectors
- SuperCam Raman and LIBS
- VEMCam Venus Raman and LIBS

Samples

- LIBS Spectral Libraries
 - Spectra for each pure REE
 - Identify emission lines in LIBS spectra
- Calibration

- 28 Samples Prepared
- Coal Matrix
- Between 1 and 5
 REEs in each sample

REE Library Spectra (ChemCam)

Calibration Spectra ChemCam vs. Ocean Optics

1.5 m standoff distance

5 cm standoff distance

Ocean Optics spectrometers are not adequate for this analysis.

Calibration Spectra ChemCam vs. Ocean Optics

1.5 m standoff distance

5 cm standoff distance

Ocean Optics spectrometers are not adequate for this analysis.

Coal Matrix vs. Doped Sample

Coal with 1% Eu

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Coal vs. Ash LIBS Spectrum

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Typical Geochemical Samples

Security Administration Slide 12

Calibration Analysis

- Partial Least Squares (PLS)
 - PySAT Program developed by Anderson (USGS) and Clegg
 - Used to develop calibrations for ChemCam and SuperCam
 - Leave one target out analysis
 - One target is treated as an unknown
 - Repeated for all targets
- Variables
 - X: LIBS Spectra, all wavelength channels
 - Y: Concentrations
- Developed 15 separate PLS models
- Uncertainty Analysis
 - 3 replica measurements per sample
- Estimate detection limits (conservative and likely)

Contents lists available at ScienceDirect

International Journal of Coal Geology

journal homepage: www.elsevier.com/locate/coal

Evaluation of trace elements in U.S. coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY)

Ronghong Lin*, Yee Soong, Evan J. Granite

U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236, United States

ARTICLEINFO

Keywords: Coal COALQUAL Lanthanides Rare earth elements Yttrium

ABSTRACT

Coal is a potential source of valuable elements such as rare earth elements and yttrium (REY). In this work, REY concentrations in U.S. domestic coals were evaluated using data from the USGS COALQUAL Database Version 3.0. The database contains a total of 7657 non-weathered, full-bed coal samples. The number of samples containing REY data points varies among elements. Assessment of data quality indicates that some of the REY data are semi-quantitative and should be used with caution. Different analytical instruments and methods with varying accuracies and precisions are thought to be the main sources of errors. Inclusion of qualified data also accounts for the sawtooth pattern of the UCC-normalized REY distribution. A new set of Q factor values was thus proposed to adjust qualified data. Consequently, mean concentrations of REY in U.S. coals were obtained with a total REY concentration of 65.5 ppm on a moisture-free whole coal basis. Further evaluation of REY in 5378 selected coal samples indicates that about 9–13% of the samples fall into the combined category of promising and highly promising coals for REY, according to the classification of Dai et al. (2017). Taking sampling bias into consideration, we further found that bituminous coal, particularly from the central Appalachian region, has the highest probability of being a source for beneficial recovery of REY. More specifically, bituminous coal from eastern Kentucky is likely to be the best option. Finally, we conclude that U.S. domestic coal is a promising, alternative source for beneficial recovery of REY to meet the U.S. REY demand for economic growth.

Detection Requirements for Instrument Design

Table 2

A summary of REY data from the USGS COALQUAL V3.0 database (Concentrations in ppm on a moisture-free whole coal basis).

Element	Include data with L qualifier			Exclude data with L qualifier			Data with L qualifier			From Finkelman (1993) ^a					
	No. of samples	Max	Mean ^b	SD°	No. of samples	Max	Mean	SD	No. of samples	%L ^d	Mean	No. of samples	Max	Mean	SD
Y	7585	185	8.93	6.84	7560	185	8.94	6.83	25	0.3	4.92	7897	170	8.5	6.7
La	6652	236	11.70	9.42	6160	236	11.19	9.06	492	7	18.10	6235	300	12	16
Ce	6081	506	23.96	25.45	5557	506	20.69	17.42	524	9	58.68	5525	700	21	28
Pr	5601	110	10.21	8.33	948	67.5	6.48	7.32	4653	83	10.97	1533	65	2.4 ^e	n/a ^g
Nd	5946	236	12.32	11.09	4303	236	13.36	11.76	1643	28	9.60	4749	230	9.5 ^f	n/a
Sm	5588	68	2.54	3.78	5103	19.9	1.94	1.42	485	9	8.87	5151	18	1.7	1.4
Eu	5626	5.83	0.42	0.28	5270	5.83	0.43	0.28	356	6	0.32	5266	4.8	0.4	0.33
Gd	5602	39.7	2.91	2.39	1670	39.7	2.80	2.75	3932	70	2.96	2376	39	1.8 ^f	n/a
Tb	5619	47	1.16	3.76	4878	4.08	0.33	0.22	741	13	6.57	5024	3.9	0.3	0.23
Dy	5607	23	3.11	2.15	717	19.2	3.39	2.46	4890	87	3.07	1510	28	1.9	2.7
Ho	5598	19	1.03	1.06	351	4.59	0.75	0.56	5247	94	1.05	1130	4.5	0.35 ^f	n/a
Er	5603	16	1.24	0.95	1070	11.2	1.54	1.08	4533	81	1.17	1792	11	1	1.1
Tm	5603	7.7	0.63	0.48	42	1.99	0.44	0.41	5561	99	0.63	365	1.9	0.15 ^f	n/a
Yb	7269	9.27	1.01	0.68	7222	9.27	1.02	0.68	47	1	0.50	7522	20	0.95 ^f	n/a
Lu	5587	10.1	0.37	0.89	4945	10.1	0.16	0.24	642	11	1.99	5006	1.8	0.14	0.1

^a Data obtained from the NCRDS before the release of the COALQUAL database.

^b Mean: arithmetic mean.

^c SD: standard deviation.

^d Percent of data with L qualifier.

^e Estimated based on NCRDS and literature data.

f Calculated from La and Ce data assuming a smooth chondrite-normalized REE distribution pattern with the exception of Eu.

^g No data available.

REE Elemental Detection Limits Estimates vs. Requirements

	Requireme	ents (ppm)	LIBS DL (ppm)			
Elements	Max	Mean	Conservative	Likely		
Υ	185	8.94	Not in st	udy		
La	236	11.19	100	10		
Ce	506	20.69	150	15		
Pr	67.5	6.48	70	5		
Nd	236	13.36	200	10		
Sm	19.9	1.94	60	4		
Eu	5.83	0.43	50	5		
Gd	39.7	2.8	60	5		
Tb	4.08	0.33	50	4		
Dy	19.2	3.39	20	3		
Но	4.59	0.75	40	1		
Er	11.2	1.54	20	2		
Tm	1.99	0.44	30	2		
Yb	9.27	1.02	20	1		
Lu	10.1	0.16	20	1		

- Design instrument to meet requirements (Lin et al.)
- In situ analysis, not remote like ChemCam
- Obtain more certified calibration standards
 - Requires correct matrix
- Sampling protocol

• Los Alamos NATIONAL LABORATORY

Summary

- LIBS can detect all REEs with a coal matix
 - Detection limits specified by Lin et al. should be achievable in a field deployable instrument.
- A gated detector would significantly improve the detection limits and quantitative analysis
 - Ocean Optics spectrometers could be used but probably would not realize the required detection discussed in Lin et al.
- REE Mineralogy will be determined by Raman spectroscopy
 - Also requires gated detector.

Backup

CHEMISTRY

Slide 19

AGU PUBLICATIONS

Journal of Geophysical Research: Planets

RESEARCH ARTICLE

Key Points:

- Revised Li, Sr, Rb, and Ba abundances have been obtained with updated univariate calibrations
- The trace element abundances of alkaline and magnesian rocks are similar to the composition of monzonitic and basaltic clasts in NWA7533
- Alkali trace element enrichments are associated with K-bearing

Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

V. Payré¹ (D), C. Fabre¹ (D), A. Cousin² (D), V. Sautter³ (D), R. C. Wiens⁴, O. Forni² (D), O. Gasnault² (D), N. Mangold⁵ (D), P.-Y. Meslin² (D), J. Lasue² (D), A. Ollila⁴, W. Rapin², S. Maurice², M. Nachon⁶ (D), L. Le Deit⁵, N. Lanza⁴ (D), and S. Clegg⁴ (D)

¹GeoRessources, Université de Lorraine, Nancy, France, ²Institut de Recherche en Astrophysique et Planétologie, Université Paul Sabatier-OMP/CNRS, Toulouse, France, ³LMCM, Muséum d'Histoire Naturelle, Paris, France, ⁴Los Alamos National Laboratory, Los Alamos, New Mexico, USA, ⁵Laboratoire de Planétologie et Géodynamique, LPG-Nantes, Nantes, France, ⁶Earth and Planetary Sciences, University of California, Davis, California, USA

Table 2.	Summary	Table of Li,	Sr, Rb,	and Ba	Quantifications	of	ChemCarr	n Data

			Peak	Fitting			RMSE	LOD	
Input	Peak (nm)	Function	Baseline	Range (nm)	Deconvolution (nm)	Calibration Equation	Validity	(ppm)	(ppm)
.i	670.97	Lorentz	Parabolic	669.9–674.0	Si: 670.12 Ca: 671.85	$y = 4.04 \text{ E6 } x^2 + 34060 \text{ x}$	Area < 1.8 E - 3	5	5
Clean	421.67 780.24 a			421.4-422.3	Ca: 422.055	$y = 7.99 \text{ E9 } x^2 + 17.16 \text{ E5 } x$	Area $< 4.0 E - 4$	150	87
Rb Calibrated				779.3–781.0	None	$y = 2.83 \text{ E7 } x^2 + 27.77 \text{ E4 } x$	Area < 1.2 E - 3	34	26
Spectra ^a					Ti: 454.6		Area < 1.2 E - 3		
Ba	455.55			454.4-456.2	455.09 455.68	$y = 3.74 \text{ E9 } x^2 + 18.81 \text{ E5 } x$	SiO ₂ < 70 wt %	334	120
	Input Clean Calibrated Spectra ^a	Input Peak (nm) 670.97 421.67 780.24 5pectra ^a 455.55	InputPeak (nm)Function670.97421.67 780.24Lorentz2alibrated Spectraa455.55Lorentz	InputPeak (nm)FunctionBaselineInput670.97421.67A21.67ParabolicClean Calibrated Spectraa425.55LorentzParabolic	Input Peak (nm) Function Baseline Range (nm) Clean Calibrated Spectra ^a 670.97 421.67 780.24 669.9-674.0 421.4-422.3 779.3-781.0 455.55 455.55 454.4-456.2	Input Peak (nm) Function Baseline Range (nm) Deconvolution (nm) Input 670.97 669.9-674.0 Si: 670.12 Ca: 671.85 421.67 421.67 780.24 421.4-422.3 Ca: 422.055 779.3-781.0 None Ti: 454.6 455.09 455.55 455.44-456.2 455.68 Ti/Si: 455.35	$\begin{array}{ c c c c c } \hline Peak (nm) & Function & Baseline & Range (nm) & Deconvolution (nm) & Calibration Equation \\ \hline \\ Clean \\ Calibrated \\ Spectra^{a} \end{array} \begin{array}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{array}{ c c c c c } \hline Peak (nm) & Function & Baseline & Range (nm) & Deconvolution (nm) & Calibration Equation & Validity \\ \hline Peak (nm) & Function & Baseline & Range (nm) & Deconvolution (nm) & Calibration Equation & Validity \\ \hline Clean \\ Calibrated \\ Spectra^{a} & 421.67 \\ 780.24 & Lorentz & Parabolic & 421.4-422.3 & Ca: 422.055 & y=7.99 E9 x^{2}+17.16 E5 x & Area < 1.8 E - 3 \\ 421.4-422.3 & Ca: 422.055 & y=7.99 E9 x^{2}+17.16 E5 x & Area < 4.0 E - 4 \\ y=2.83 E7 x^{2}+27.77 E4 x & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area < 1.2 E - 3 \\ Area < 1.2 E - 3 & Area $	$ \frac{1}{10 \text{ put}} = \frac{1}{10 \text{ peak (nm)}} + \frac{1}{10 \text{ ruction}} + \frac{1}{10 \text{ seline}} + \frac{1}{10 \text{ seline}$

^aClean Calibrated Spectra (CCS) are processed spectra as described in Wiens et al. [2013].