

Pilot-Scale Testing of an Integrated Circuit for the Extraction of Rare Earth Minerals and Elements from Coal and Coal Byproducts Using Advanced Separation Technologies

PRINCIPAL INVESTIGATOR: Dr. Rick Honaker University of Kentucky

DOE Award Number: DE-FE0027035 Period of Performance: 3/1/2016 – 2/28/2020 NETL Program Manager: Charles Miller

2019 Annual Project Review Meeting

Crosscutting Research, Rare Earth Elements, Gasification Systems, and Transformative Power Generation

April 9 - 11, 2018

Project Objectives

• Develop, design and demonstrate a ¼-tph pilot-scale processing system for the recovery of high-value rare earth elements (REEs) from coal and coal byproducts.

Integration of physical and chemical separation processes as needed;

Production of concentrates with purity levels of at least 2% total REEs;

Technical and economic feasibility.

>90% Rare Earth Oxide Mix Concentrate

Project Team

3

Process Flowsheet

4

REE Pilot Plant Location: Providence, Kentucky

Process Modules

- 1.00 Preconcentration (Mine Site)
- 2.00 Size Reduction/Liberation
- 3.00 Physical Separation
- 4.00 Acid Leaching
- 5.00 Solvent Extraction & Precipitation
- 6.00 Chemical Storage
- 7.00 Rare Earth Mineral Concentration

REE Pilot Plant (https://m.youtube.com/watch?v=jR70j-MzWNE)

PLC Control System

Analytical Lab

ICP-OES & Fume Hood

Deionized Water System

REE Preconcentration

REE Preconcentration

REEs concentrate in the middle density fractions of high rank coals...

... which allows the potential of preconcentration based on particle density.

Technology Description

Technology Description

Mobile REE Sorter Performance

	Pass	Eject	CR
Ash (%)	89.6	78.1	0.90
TREE (ppm)	312	438	1.29
HREE (ppm)	44	61	1.28
LREE (ppm)	268	377	1.29

Leaching Circuit

Pilot Plant Leach Circuit

Minimum Acid and Base Cost Assessment

Minimum cost of acid and base chemicals per kg of REE in PLS...

... and the cost when treating a solid feedstock with a given REE content.

- Cost of H₂SO₄ and NaOH needed to reduce pH from 7.0 and increase to a value of 8.0.
- PLS = Pregnant Leach Solution

- Assumes 100% recovery of REEs;
- Liquid:Solid ratio = 5:1;
- Consumption by solids not included.

Pre-Leach Roasting

- Roasting at an optimum temperature of 500 – 750 ^oC causes:
 - Decomposition of rare earth minerals in the presence of activating reactants
 - Decomposition of clays
- Fuel is provided by the presence of carbonaceous material.
- Advantages include:
 - Improved REE recovery
 - Reduced acid consumption
 - Increased leaching kinetics
 - Reduced contaminant content in PLS.

Pre-Leach Roasting

WK No. 13 Coarse Refuse

Pocahontas No. 3 Coarse Refuse

Laboratory Column Heap Leach Tests

Heap Leach PLS: SX Feed

West Kentucky No. 13 Refuse Heap Leach

Elemental Analysis

Element	PPM	Ele
Sc	0.78	
Y	3.90	
La	0.31	
Ce	2.25	
Pr	0.88	
Nd	1.09	
Sm	0.62	
Eu	0.19	
Gd	2.65	
Tb	0.29	
Dy	0.95	
Ho	< 0.003	
Er	0.01	
Tm	0.09	
Yb	0.31	
Lu	0.14	
Total	14.45	

Element	PPM			
Th	<0.003			
U	1.53			
Fe	5453			
AI	1467			
Ca	459			
Mg	572			
Mn	77.6			

SX Rougher Circuit

SX Cleaner & Precipitation Circuit

SX Circuit Conditions

Parameter	Value		
Feed Rate	0.5 gpm		
Organic : Aqueous	1:1		
Solvent	Orform		
Extractant	DEHPA		
Extractant Dosage	5% by volume		
Phase Modifier	TBP		
Modifier Dosage	10% by volume		
Feed pH	2.0		
Reducing Agent	Ascorbic Acid		
Strip Solution	6M HCl		
Scrub Solution	0.5M HCl		

Rougher Circuit Start-up Performance

Feed to REO Products

SX Circuit REO Concentrates

Rare	REO Concentration (%)							
Earth Element	27-Nov	28-Nov	29-Nov	3-Dec	4-Dec	5-Dec	6-Dec	7-Dec
Sc	0.02	0.01	0.02	0.03	0.03	0.03	0.02	0.02
Y	17.49	19.24	18.53	18.04	17.06	21.96	24.73	23.18
La	0.23	0.26	0.16	0.14	0.16	0.29	0.49	0.59
Ce	6.94	6.88	3.84	3.58	3.91	5.93	7.99	8.08
Pr	2.43	2.75	1.81	1.69	1.84	2.15	2.24	1.97
Nd	15.71	16.05	12.75	11.79	12.19	12.58	12.09	10.36
Sm	12.41	11.31	13.26	12.03	12.12	9.75	7.48	6.26
Eu	3.69	3.35	4.20	3.83	3.79	2.95	2.20	1.79
Gd	18.00	17.23	20.65	18.99	18.62	15.43	12.20	10.09
Tb	2.65	2.56	3.08	2.85	2.78	2.38	1.87	1.56
Dy	10.31	10.34	12.26	11.54	11.01	10.11	8.52	7.19
Ho	1.38	1.39	1.68	1.58	1.45	1.46	1.30	1.11
Er	1.65	1.83	2.41	2.27	2.02	2.23	2.06	1.81
Tm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Yb	0.10	0.12	0.26	0.25	0.20	0.27	0.26	0.23
Lu	0.00	0.00	0.02	0.02	0.01	0.02	0.02	0.02
Total	93.02	93.32	94.93	88.63	87.20	87.55	83.48	74.27

30

Economic Analysis

Conclusions:

- Water reduction process is uneconomical.
- Preconcentration of the REEs in the PLC to SX is required.

Summary & Conclusions

- A pilot plant that integrates physical and chemical separation processes to recovery REEs from coal-based sources has been designed and installed. Testing is ongoing.
- Roasting provides significant REE recovery and chemical reduction benefits.
- The current SX circuit has the ability to produce high quality REO concentrates; however, a reduction in chemical costs is required.
- The low REE contents in coal-based sources limits the amount of acid that can be used to improve REE recovery.
- Reduction of PLS solution prior to SX is uneconomical.
- Preconcentration of REEs in the PLS to around 500 ppm prior to SX is required.

Next Steps

- Roasting
 - Determining the impact of activating agents
 - Installation of continuous roaster
 - Optimization
- Tank Leaching
 - pH 2 leaching no control
 - pH 2 leaching with control
 - Heap leaching
- Selective Precipitation
 - Tests with and without reduction of Fe²⁺ at lab and pilot plant scale
- Modify circuitry

Thank You...

