A Partnership of Inventure, TMRC, PSU & K-Tech

Recovery of Rare Earth Elements from Coal Mining Waste Materials

Presented by Rusty Sutterlin Ph.D (Chief Science Officer)

LETTERS OF SUPPORT

Governor Kay Ivey

Robert Aderholt Member of Congress

Terri Sewell Member of Congress

Mayor Walt Maddox

Senator Richard Shelby

The Search for REE's

• .

Refined the Methodology of Using Yttrium as an Indicator to Estimate Total Rare Earth Element Concentration

Figure 6. Linear fits of REY versus Y for samples B1-B7

Source: Xiaojing Yang, Daniel Kozar, Daniel Gorski, Anthony Marchese, James Pagnotti, Rusty Sutterlin, Mohammad Rezaee, Mark S. Klima, Sarma V. Pisupati, "Using Yttrium as an Indicator to Estimate Total Rare Earth Element Concentration: A Case Study on the Rare Earth Element and Yttrium Distribution Patterns of Materials Associated with Pennsylvanian Coals", Manuscript to be submitted to Journal of Rare Earth Elements

North Eckley, Pa. Site

Pagnotti Enterprises, Inc

- Phase 1 Search Resulted in
 - Analyzed 74 coal overburden samples from 9 mine sites
 - 17 AMD sludges with more to go

Drums

Ŧ

0

Freeland HIGHLAND #2

Pardeesville

Foundryville/Highland #5 Jeddo

Jeddo #7

ECKLEY NORTH

North Eckley, Pa. Site

Acid Mine Drainage Sludge

Location	Description	Total REE ppm (Whole Dry Basis)
Central, PA	AMD 1	604
Central, PA	AMD 2	1716
Central, PA	AMD 3	734

Extraction and Separation of REE's and Valuable BiProducts

Multi-Feedstock Extraction Process to Generate a Pregnant Leach Solution (PLS)

Method 1 to Generate a PLS High Temperature (210°C) Pressure Leach

Method 2 to Generate a PLS Ambient Acid Leaching

Separation Process - Anion Exchange

Separation Process - Anion Exchange Iron Removal Step

 $3HCl + Fe \rightarrow FeCl_3$ 4HCl (excess) + Fe \rightarrow FeCl₄⁻¹ $FeCl_4^{-1} + H_2O$ (wash) \rightarrow $FeCl_3$

The FeCl₃ solution is a popular water flocculating agent used all over the world for water purification.

3.6

REE

(ppm)

150.3

126.6

19.9

later Wash

Separation Process - Anion Exchange Iron Removal Step

Separation Process – CIX Stage 1 Non- REE Removal

Separation Process – CIX Stage 1

REEs recovered after acid mine drainage sludge has passed through the CIX system.

Separation Process – CIX Stage 2 Separation to Lights, Mids and Heavies.

enture

Separation Process – Stage 2 Separation to Lights, Mids and Heavies.

Smaller chromatography system used for stage 2 that separates the REEs into their light, mid and heavy fractions.

Lights	Mids	Heavies			
Individual REE, 314.88 ppm SC – 29.76 Y- 8.05 La - 62.92 Ce – 214.15	Individual REE, 107.56 ppm Pr – 9.63 Nd – 63.29 Sm – 13.66 Eu – 4.27 Gd -16.71	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			
The results after Stage 2 that show the REE's divided up into three fractions.					

Separation Process – Stage 3 Separation to Individual REEs.

Separation Process – Stage 3 Separation to Individual REEs.

REE Samples

Do REE's Make Money?

Revenue Streams of Aluminum, Iron and REE's

Assuming 200 MTPD with our Elemental Composition and DOE REE Pricing

	MT/year	Recovery %	Sell Price (\$/MT)	Gross Component Revenue (\$/yr)		
Aluminum	5544	0.75	2350	13,028,400		
Iron	4950	0.75	52	257,400		
REEs TOTAL	19	0.75	From Worksheet	4,753,730		
Note: Iron Chloride is \$400/Ton and is a 40% solution. (14% Ferric Ion)						

Other Extraction and Separation of REE's

REEs were extracted and concentrated to 2% on a dry and whole sample basis with 95% recovery

Proprietary PSU ligand B was developed and thereby reduced extraction pH to 5 with high recovery (90%)

Inventure Recent Success

- Vitamin E Plant in China
- Final Engineering of Two Fatty Acid Acidulation Plant
- Detailed Engineering Phase of a Glycerin to Propylene Glycol Plant in Louisiana
- Partnership with Air Liquide/Lurgi to market oleochemical technologies.

Inventure is quickly becoming a provider of multiple new technologies and taking those technologies to commercial scale.

