

Mid IR Laser Sensor for Continuous SO₃ Monitoring to Improve **Coal-Fired Power Plant Performance during Flexible Operations**

EPER ELECTRIC POWER RESEARCH INSTITUTE

Richard Himes

Camille Makarem

UCI University of California, Irvine

Derek Dunn-Rankin Andrea Biasioli Alice Chien

Jason Kriesel (jason@oksi.com)

Larry Muzio

Karol Schrems

Project Description and Objectives

Purpose:

Produce and demonstrate a continuous SO₃ monitor for coal-fired power plants

Alignment to Fossil Energy objectives

- Real-time information to optimized additive injection and minimize catalyst deactivation
- Without an SO₃ monitor, power plants over use sorbent => waste (typical sorbent costs \$1M/yr)
- Sensor would enable cost savings (\$100k/yr \$200k/yr) and improved flexible operations

Driving questions

- Can the sensor provide sufficient sensitivity in a challenging environment?
- Do measurements accurately reflect the composition of the flue gas?

Sorbent Injection for SO₃ Mitigation

Lack of continuous SO₃ monitor limits ability to optimize sorbent injection rates

Alkali Sorbent Injection

Alkali sorbent injection uses include:

- Mitigation of H₂SO₄ 'blue plume'
- Enhanced powdered activated carbon (PAC) efficiency in capturing mercury
- Mitigation of ammonium bisulfate (ABS) and SO₃ condensation impacts on air heater fouling
- Mitigation of duct corrosion due to SO₃
 condensation

Alkali sorbent injection locations moving upstream:

- Originally downstream of air heater / upstream of particulate collection device
- Also between the Selective Catalytic Reduction (SCR) outlet and air heater
- Recently positioned upstream of the SCR

Lack of continuous SO₃ monitor limits ability to optimize sorbent injection rates

Project Description and Objectives

EPRI UCI =FERCo

Technology Benchmarking

Opto (Knowledge

- Accepted standard is controlled condensation: wet chemistry, off-line process (EPA method 8A)
- Breen probe being used, but it is a non-specific condensation probe with limitations

Current Status of Project

- Protype laser absorption system tested/validated in laboratory tests of SO₂
- Working to generate SO₃ and H₂SO₄ for higher fidelity validation
- Industry feedback: "We need a solution now"

Spectroscopy System

Mid-Infrared Wavelength Range

Mid-IR Spectroscopy

- Fundamental transitions in Mid-Infrared (λ : 2 -12 μ m) stronger than overtones in NIR (λ : 1 -2 μ m)
- Molecular species uniquely identified and precisely quantified
- But..... NIR benefits from developed components (telecom investments)

Prior Related Work Using FTIR

EPRI UCI =FERCo

EPRI funded work¹:

Opto (Knowledge

- > Both H_2SO_4 and SO_3 can be detected and quantified
- Multi-port cross-duct measurements found minimal (10%) variation in SO₃ quantity across the duct

Danish EPA funded work²:

- Verified Mid-IR spectroscopy in heated lab cells
- \succ Generated SO₃ with ozone method
- \succ Could not measure SO₃ in field

Comparison to Current Effort:

- Lasers are more intense than FTIR source enabling faster and more sensitive measurements
- \blacktriangleright Current system for SO₃ generation uses catalyst

Fourier Transform Infrared (FTIR) Spectrometer

- 1. "Continuous Measurement Technologies for SO3 and H2SO4 in Coal-Fired Power Plants", EPRI Technical Report #1009812 (2006
- 2. "Sulfur trioxide measurement technique for SCR units", The Danish Environmental Protection Agency Project #1885 (2016).

Technology Development

- \succ Dual laser approach for SO₃ and H₂SO₄
- Need "broad" wavelength tuning lasers
- Use close-coupled heated multi-pass cell
- Use inertial filter sampling
- Mid-IR Fiber Optics for remote laser delivery

Broad Tuning Laser

Pacific Northwest

- External-cavity Quantum Cascade laser with broad-tuning capabilities
- Custom laser developed at Pacific Northwest National Laboratory (PNNL) transitioned to OptoKnowledge
- Sensitive to multiple gas species and able to measure "large" and "small" molecules
- Better solution than standard "narrow-tuning" Distributed Feedback (DFB) lasers

Laser

Hollow Core Fiber Optics

Hollow Fiber (Waveguide)

- Technique developed by Rutgers
- Transitioned to OptoKnowledge
- Manufactured and sold by OptoKnowledge

Hollow Fiber Optic

- Full-line of hollow fiber optics products
- Used as gas cell for other applications

http://www.optoknowledge.com/fiberstore.html

Commercial

QC Laser

Coiled hollow fiber

Fiber Optic Delivery to Multi-pass Cell

- Investigate trade-off between transmission and beam quality
- Demonstrated remote delivery of laser with and L = 5 m fiber cable
- Sufficient transmission and beam quality for multi-pass measurements at 1 ppm level
- > Also produced beam combiner for coupling two lasers into a single fiber

Measurement of Methane used to verify multi-path cell

Flue Gas Test Facility

UCI University of California, Irvine

- Heated vanadium catalyst bed reactor
- Heated optical cell with windows: T = 400°C (750°F)
- Controlled condensation setup for validation
- Still working on generating SO₃ and H₂SO₄ with known quantities

CRI UCI =FERCo

Measurements

- Laser systems demonstrated with heated multi-pass test cell
- \succ 1 ppm level sensitivity for SO₂ at elevated temperatures
- > No evidence of SO_3 (problems with catalyst?)

Opto () Knowledge

14

Power Plant Testing

FirstEnergy Harrison Station host site

- > 3 x 700 MW units equipped with:
 - SCR for NOx control
 - ESP for particulate control
 - FGD scrubbers for SO₂ control

Initial proof-of-concept testing scheduled in 2019

- First test conducted between economizer outlet and SCR ammonia-injection grid
- Second test conducted downstream of air heater focusing on H₂SO₄
- Controlled condensate wet chemical tests to be obtained in parallel (SO₃ + H₂SO₄)

<u>Summary</u>

- A continuous SO₃ monitor is needed to optimize sorbent injection
- Mid-IR Laser spectroscopy solution
- Advancing the state of the art
 - Broad tuning Mid-IR lasers
 - Hollow core fiber optics
 - Close-coupled, heated multi-pass cell
- Technology proven with 1 ppm sensitivity of SO₂
- \blacktriangleright Working to generate SO₃ and H₂SO₄
 - UCI flue gas facility need to understand catalyst function
 - Will also conduct tests at alternative facility (FERCo)

Backup

Cross Duct Measurements

Port

Opto (Knowledge **EP2**)

Operational Benefits of Pre-SCR Dry Sorbent Injection

FERCo

UCI

- Injection upstream of SCR reduces SO₃ and associated ABS formation potential
 - Control of SO₃ below 5 ppm reduces ABS capillary condensation temperature ~40°F
 - Reduced SCR minimum operating temperature enables deeper load cycling
 - Minimizes operating losses during uneconomic periods
 - Depending on load forecasts, can forestall taking unit off-line
- Lower SO₃ concentrations reduce rate of ABS formation
- Better mixing achieved with pre-SCR injection vs post-SCR injection due to increased residence time

ABS Capillary Condensation Temperature for 40 Angstrom Pore Diameter at 90% SCR NOx Reduction

Operational Benefits of Dry Sorbent Injection

FERCo

UCI

- Mitigation of SO₃ and associated air heater fouling issues can also enable reduction in air heater gas outlet temperature
 - Potential for nominal 1% heat rate benefit
 - Proportional reduction in CO₂ emissions
- Reduced flue gas temperature from air heater can also:
 - Enhance Hg oxidation

Opto (Knowledge

- Improve ESP performance
- Reduce FGD scrubber liquor evaporation

Equilibrium Conditions vs Temperature

Inertial Filter

Fiber Beam Combiner

