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1. Project Description and Objectives 
NETL’s MFiX —Multiphase Flow with Interphase eXchange

• Central to the laboratory’s multiphase flow reactor 
modeling efforts

• Provides support to achieve DOE’s goals
1. Cost of Energy and Carbon Dioxide (CO2) 

Capture from Advanced Power Systems
2. Power Plant Efficiency Improvements 

• Built with varying levels of fidelity/computational 
cost
 Lower fidelity models for large scale reactor 

design
 High fidelity models to support the 

development of lower fidelity models
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Model uncertainty



1. Project Description and Objectives 

• Fine grid with 1.3M cells
• Two solid phases (coal and recycled ash)
• Detailed gasification chemical kinetic (17 gas 

species, 4 solid species)

High-end validation study:

What was missing the in the model?

No real radiative heat transfer modeling 
available in MFiX!

Status of the beginning of the project

Driving Question/Motivation
Enhance MFiX capabilities by including 
models for radiative heat transfer 
following MFiX’s multi-fidelity approach

Results from : “Fluidized Beds – recent applications”, 
W. Rogers, 215 IWTU Fluidization Workshop 



1. Project Description and Objectives 
Technology benchmarking: comparing three popular CFD packages 

Capability MFiX OpenFOAM (open source) ANSYS-FLUENT 
(commercial)

TFM reacting yes yes yes

DEM reacting yes no no

Radiative Heat transfer no Gray, P1, DOM Gray, simple WSGG, P1, 
DOM



1. Project Description and Objectives 
MFIX-RAD development plan 

So
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Model uncertainty

PMC +  Line-by-line model (full spectral resolution ~10 million 
lines) -> model error free

PMC +  Weighted Sum of Gray Gases (WSGG) model 

P1 +  WSGG model (gas & particles)

P1 +  Gray gas & particle model 
(neglect all spectral variations)

“Industrial Model”

“Basic Model”

“Research Models”

P1 +  WSGG model & gray particles

P1 + gray constant (neglect all 
spectral and spatial variations)

Usable in MFIX-TFM and 
MFIX-DEM!



2. Project Update

Year 1 Year 2 Year 3 Year 4

Tasks 10/
17
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18

04/
18

07/
18

10/
18

01/
19

04/
19
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19
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19
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20
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20
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20

10/
20

01/
21

04/
21

07/
21

T-1: Project 
Management and 
Planning

T-2: Testing of the 
previously developed 
MFIX-RAD Radiation 
Model Plug-In

T-3: Implementing basic 
radiation model within 
MFIX-DEM

T-4: Implementation and 
Verification of Industrial 
Models

T-5: Industrial Model 
Application and Analysis

T-6: Development of 
High-End Research 
Models

T-7: Comprehensive 
Validation and 
Benchmark

We have received a 1 year, no cost extension

Ongoing

Done!

Early stage work (MS 
student)



2. Project Update
Modeling approach

ε𝑔𝑔𝜌𝜌𝑔𝑔𝑐𝑐𝑝𝑝𝑔𝑔(𝜕𝜕𝑇𝑇𝑔𝑔
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑔𝑔 .∆𝑇𝑇𝑔𝑔) = 𝛻𝛻𝑞𝑞𝑔𝑔 + ∑𝑚𝑚=1
𝑀𝑀 𝐻𝐻𝑔𝑔𝑔𝑔𝑚𝑚 − ∆𝐻𝐻𝑟𝑟𝑔𝑔 + 𝐻𝐻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑇𝑇𝑔𝑔 − 𝛻𝛻. �⃑�𝑞𝑟𝑟𝑔𝑔

Energy equations for MFiX-TFM

ε𝑔𝑔𝑚𝑚𝜌𝜌𝑔𝑔𝑚𝑚𝑐𝑐𝑝𝑝𝑔𝑔𝑚𝑚(𝜕𝜕𝑇𝑇𝑠𝑠𝑚𝑚
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑔𝑔𝑚𝑚 .∆𝑇𝑇𝑔𝑔𝑚𝑚) = 𝛻𝛻𝑞𝑞𝑔𝑔𝑚𝑚 + ∑𝑚𝑚=1
𝑀𝑀 𝐻𝐻𝑔𝑔𝑔𝑔𝑚𝑚 − ∆𝐻𝐻𝑟𝑟𝑔𝑔𝑚𝑚 − 𝛻𝛻. �⃑�𝑞𝑟𝑟𝑔𝑔𝑚𝑚Solids

Gas

Single particle Energy equation for MFiX-DEM

𝑚𝑚𝑖𝑖𝑐𝑐𝑝𝑝,𝑖𝑖
𝑑𝑑𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑 = �

𝑛𝑛=1

𝑁𝑁𝑖𝑖

𝑞𝑞𝑖𝑖,𝑗𝑗 + 𝑞𝑞𝑖𝑖,𝑓𝑓 + 𝑞𝑞𝑖𝑖,𝑟𝑟𝑤𝑤𝑟𝑟 + 𝑞𝑞𝑖𝑖,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

Source/Sink Terms are obtained from the thermal radiation model! 



2. Project Update
𝑑𝑑𝐼𝐼𝜂𝜂
𝑑𝑑𝑠𝑠

= 𝑠𝑠 ⋅ 𝛻𝛻𝐼𝐼𝜂𝜂 = 𝑎𝑎𝜂𝜂𝐼𝐼𝑏𝑏𝜂𝜂

−𝑎𝑎𝜂𝜂𝐼𝐼𝜂𝜂

−𝜎𝜎𝑔𝑔𝜂𝜂𝐼𝐼𝜂𝜂 +
𝜎𝜎𝑔𝑔𝜂𝜂
4𝜋𝜋

� 𝐼𝐼𝜂𝜂 𝑠𝑠′ Φ𝜂𝜂( 𝑠𝑠, 𝑠𝑠′)𝑑𝑑Ω

The RTE is an integro-differental equation for the 
spectral intensity 𝐼𝐼𝜂𝜂(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝜙𝜙,𝜓𝜓, 𝜂𝜂)
(a function of 6 variables!)

Source term in the energy equation:

𝑆𝑆𝑟𝑟𝑤𝑤𝑟𝑟 = 𝛻𝛻 ⋅ �⃗�𝑞𝑟𝑟𝑤𝑤𝑟𝑟 = �
0

∞

𝑎𝑎𝜂𝜂 4𝜋𝜋𝐼𝐼𝑏𝑏𝜂𝜂 − �
4𝜋𝜋
𝐼𝐼𝜂𝜂𝑑𝑑Ω 𝑑𝑑𝜂𝜂

• 3 spatial dimensions 𝑟𝑟 𝑥𝑥,𝑦𝑦, 𝑧𝑧 :CFD discretization
• 2 directional dimensions 𝑠𝑠 𝜙𝜙,𝜓𝜓 : RTE solvers
• 1 spectral dimension 𝜂𝜂 : spectral models

Solution approach:
𝐺𝐺𝜂𝜂 spectral incident radiation



2. Project Update
Gray P1 model assumptions

1) Gray participating medium (gas and solids) -> no dependence on wavenumber 𝜂𝜂

𝑑𝑑𝐼𝐼𝜂𝜂
𝑑𝑑𝑠𝑠

= 𝑠𝑠 ⋅ 𝛻𝛻𝐼𝐼𝜂𝜂 = 𝑎𝑎𝜂𝜂𝐼𝐼𝑏𝑏𝜂𝜂 − 𝑎𝑎𝜂𝜂𝐼𝐼𝜂𝜂 − 𝜎𝜎𝑔𝑔𝜂𝜂𝐼𝐼𝜂𝜂 +
𝜎𝜎𝑔𝑔𝜂𝜂
4𝜋𝜋

� 𝐼𝐼𝜂𝜂 𝑠𝑠′ Φ𝜂𝜂( 𝑠𝑠, 𝑠𝑠′)𝑑𝑑Ω

2) Use a “Fourier series” ansatz 𝐼𝐼 𝑟𝑟, 𝑠𝑠 = ∑𝑤𝑤=0∞ ∑−𝑤𝑤𝑤𝑤 𝐼𝐼𝑤𝑤 𝑟𝑟 ⋅ 𝑌𝑌𝑤𝑤 𝑠𝑠

Spatially varying coefficients

Gas phase emission

3) Keeping only the first term 𝑙𝑙 = 0 leads to the P1 approximation

𝛻𝛻. Γ 𝛻𝛻𝐺𝐺 + 4 𝜋𝜋 𝑎𝑎𝑔𝑔
𝜎𝜎 𝑇𝑇4

𝜋𝜋
+ 𝐸𝐸𝑔𝑔 − 𝑎𝑎𝑔𝑔 + 𝑎𝑎𝑔𝑔 𝐺𝐺 = 0

4) Solve a “combined” (including all phases) P1 equation for G (Helmholtz type)

Solid phases emission

Gas phase absorption 

Solid phase absorption 

Γ =
1

3 𝑎𝑎𝑔𝑔 + 𝑎𝑎𝑔𝑔 + 𝜎𝜎𝑔𝑔 − 𝐶𝐶𝜎𝜎𝑔𝑔

Spherical harmonics



2. Project Update
“Distributing the source terms”

Continuous phase −𝜵𝜵.𝒒𝒒𝒓𝒓𝒓𝒓 = 𝒂𝒂𝒓𝒓 𝑮𝑮 − 𝟒𝟒𝒂𝒂𝒓𝒓𝝈𝝈 𝑻𝑻𝒓𝒓𝟒𝟒

𝛻𝛻. Γ 𝛻𝛻𝐺𝐺 + 4 𝜋𝜋 𝑎𝑎𝑔𝑔
𝜎𝜎 𝑇𝑇4

𝜋𝜋
+ 𝐸𝐸𝑔𝑔 − 𝑎𝑎𝑔𝑔 + 𝑎𝑎𝑔𝑔 𝐺𝐺 = 0

Dispersed phase m (M total)

−𝛻𝛻 ⋅ 𝑞𝑞𝑟𝑟𝑔𝑔 = �
𝑚𝑚=1

𝑀𝑀

𝑎𝑎𝑔𝑔,𝑚𝑚 𝐺𝐺 − 4𝜋𝜋 �
𝑚𝑚=1

𝑀𝑀

𝑎𝑎𝑔𝑔,𝑚𝑚
𝜎𝜎 𝑇𝑇𝑔𝑔,𝑚𝑚

4

𝜋𝜋 = �
𝑚𝑚=1

𝑀𝑀

𝑎𝑎𝑔𝑔,𝑚𝑚𝐺𝐺 − 4𝑎𝑎𝑔𝑔,𝑚𝑚𝜎𝜎 𝑇𝑇𝑔𝑔,𝑚𝑚
4 = �

𝑚𝑚=1

𝑀𝑀

−𝛻𝛻 ⋅ 𝑞𝑞𝑟𝑟𝑔𝑔,𝑚𝑚

𝑎𝑎𝑔𝑔 = �
𝑚𝑚=1

𝑀𝑀

𝑎𝑎𝑔𝑔,𝑚𝑚 𝐸𝐸𝑔𝑔 = �
𝑚𝑚=1

𝑀𝑀

𝐸𝐸𝑔𝑔,𝑚𝑚 = �
𝑚𝑚=1

𝑀𝑀

𝑎𝑎𝑔𝑔,𝑚𝑚
𝜎𝜎 𝑇𝑇𝑔𝑔,𝑚𝑚

4

𝜋𝜋

−𝜵𝜵 ⋅ 𝒒𝒒𝒓𝒓𝒓𝒓,𝒎𝒎 = 𝒂𝒂𝒓𝒓,𝒎𝒎(𝑮𝑮 − 𝟒𝟒𝝈𝝈 𝑻𝑻𝒓𝒓,𝒎𝒎
𝟒𝟒 )

Gray models for 𝑎𝑎𝑔𝑔
• “gray constant” 𝑎𝑎𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑 (user input)
• “gray” => Planck mean absorption using 𝐶𝐶𝑂𝑂2 and 

𝐻𝐻2𝑂𝑂

Gray models for 𝒂𝒂𝒓𝒓,𝒎𝒎
• “gray constant” based on constant emissivity and diameter of 

particles  
• “gray” based on Buckius-Hwang correlation (depends on refractive 

index, mean particle size, void fraction and temperature) 



2. Project Update
Basic Verification of the P1 implementation

• 2D Steady, single phase

• Heat transfer via radiation (P1, 𝑎𝑎𝑔𝑔 = 0.01𝑚𝑚−1) and 
diffusion  

• Mesh: 30x200

• Use Ansys-Fluent solver for verification

Incident radiation 𝐺𝐺 [ ⁄𝑊𝑊 𝑚𝑚2] fields

FLUENT MFIiX



2. Project Update
Verification of the P1 - DEM implementation

• 2D, Radiation only (frozen “fields”), 30x90 cells
• Compare TFM and DEM results => should be identical 

• Gas phase 𝑎𝑎𝑔𝑔 = 0.3𝑐𝑐𝑚𝑚−1

• one particle per cell (𝑑𝑑𝑝𝑝 = 1𝑚𝑚𝑚𝑚, 𝑒𝑒𝑚𝑚𝑔𝑔 = 0.6 =>𝑎𝑎𝑔𝑔 =
0.6𝑐𝑐𝑚𝑚−1

Source term – gas

MFiX - TFM MFiX - DEM

𝒚𝒚 = 𝟎𝟎.𝟏𝟏𝟏𝟏𝒎𝒎

𝒚𝒚 = 𝟎𝟎.𝟏𝟏𝟏𝟏𝒎𝒎 𝒚𝒚 = 𝟎𝟎.𝟔𝟔𝟏𝟏𝒎𝒎

𝒚𝒚 = 𝟎𝟎.𝟔𝟔𝟏𝟏𝒎𝒎



2. Project Update
Relevance of thermal radiation in Lab-Scale reactors (54kWth)
• Two Fluid Model

• 2 solid phases (cold and hot char)
• 5 gas phases (𝑁𝑁2,𝑂𝑂2,𝐶𝐶𝑂𝑂,𝐶𝐶𝑂𝑂2, 𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑)
• Neglect convective heat transfer

• Geometry
• 2D Cylindrical
• 20 x 60 cells

MFIX-RAD settings in mfix.dat
# Radiation Model
RAD_ON = .T.
RAD_EMIS_W = 1.0 1.0 1.0 1.0
RAD_T_W = 300 300 800 800
RAD_NQUAD = 1
RAD_SKIP = 0
RAD_NRR = 10 
RAD_RTE = 'P1' 
RAD_SPECTRAL = 'GRAY'

Gas & solid phase reactions
2*CO --> Soot + CO2
2*CO --> Soot + CO2
CO + 0.5*O2 --> CO2
2*FC1 + O2 --> 2*CO
FC1 + CO2 --> 2*CO
2*FC2 + O2 --> 2*CO
FC2 + CO2 --> 2*CO
FC2 --> FC1
Ash2 --> Ash1 

Compare results with and 
without radiative heat transfer!



2. Project Update
Gas Temperature [K] Gas volume fraction

No rad P1 gray No rad P1 gray

Mass weighted average temperatures at the outlet

𝜟𝜟𝑻𝑻 > 𝟏𝟏𝟏𝟏𝟎𝟎𝒐𝒐𝑪𝑪

Even in low-Temp 
Lab scale reactor!



2. Project Update
Relevance of thermal radiation in a Large Scale reactor (5.4 MWth)
• Same case as before but thermal power 

scaled up by a factor of 100 
• Include convective heat transfer to 

walls using average heat transfer 
coefficient ℎ = 14 𝑊𝑊/𝑚𝑚2𝐾𝐾

• Mesh 40 x 120 cells

No rad P1 gray

Tg [K] at t=16s

Mass weighted average temperature at the outlet

𝜟𝜟𝑻𝑻 > 𝟏𝟏𝟎𝟎𝟎𝟎𝒐𝒐𝑪𝑪

Even with convective 
heat transfer!



2. Project Update
MFiX-DEM with radiation

• Only heat transfer (no chemical 
reactions)

• 2D Cartesian
• Length = 0.15 m, Height = 

0.90m, 15 x 45 cells
• Particle diameters 4mm, 2mm
• Particle emissivity 𝜖𝜖𝑝𝑝 = 0.6
• Constant gas phase absorption 

coefficient 𝑎𝑎𝑔𝑔 = 3.0𝑚𝑚−1

Time = 0.1s
Gas Temperature

No rad p1

Solid particles location

No rad p1



3. Preparing Project for Next Steps
• Market Benefits/Assessment

• MFiX is widely used the CFD tool for modeling/optimization of reacting multiphase flow

• MFiX currently has no radiative heat transfer modeling capability

• For a simple spouted bed combustor, neglecting radiative heat transfer results in temperature 
differences of 100𝑜𝑜𝐶𝐶

• Technology-to-Market Path
• Basic MFiX-RAD Plug-In is available at GitLab => every MFiX user can download and use it their process 

modeling!

• A more accurate spectral model based on WSGG is currently implemented and will be available by the 
end of May 2019

• Detailed experimental data for validation is rare in Fluidized Bed Combustors/Gasifiers at larger scale 

• We will use a LBL Photon – Monte Carlo method (model error free) to validate the lower fidelity 
gray and WSGG models to provide uncertainty values

• We are seeking industry collaborators who want to use MFiX-RAD in their applications



4. Concluding Remarks
• Basic radiation model (Gray, P1) has been implemented and verified for MFiX-TFM 

and MFiX-DEM  
• First results in low-temperature spouted bed confirm that radiative heat transfer is 

important
Next Steps
• Extend basic radiation model to be usable in the new and improved MFIX-PIC 

(v19.1)
• Finish implementation and verification of industrial model (WSGG, P1)
• Implement Photon Monte Carlo solver for detailed validation of lower fidelity 

models
• David Tobin (MS student) has started this task and it will be his thesis topic



4. Concluding Remarks
• We have received the detailed (1.4 M cells) MFiX case set up for the 

13MW Power Systems Development Facility (PSDF) gasifier => 
temperature and syngas composition data available at the outlet
• We will use this case for validation of the models in a large-scale 

application
• Expect improvements compared to simulations that neglected 

radiative heat transfer
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