

AOI 2: Modularization of Ceramic Hollow Fiber Membrane Technology for Air Separation

DE-FE0031473

PI: Xingjian (Chris) Xue University of South Carolina Columbia SC 29208 Email: <u>Xue@cec.sc.edu</u>

PO: Diane R. Madden National Energy Technology Laboratory U.S. Department of Energy

Objective of project

 Develop membrane stack and module for air separation and oxygen production using ceramic hollow fiber membrane technology

Strategic alignment of project to Fossil Energy objectives

- Cost of Energy and Carbon Dioxide (CO2) Capture
 - Pure oxygen instead of air for combustion of power plant produces CO2, no need to separate nitrogen from down stream;
 - Reduce the cost and simplify the system for CO2 capture.
- Power Plant Efficiency Improvements
 - Pure oxygen instead of air increases efficiency of power plant;
 - Cost-effective, reliable technologies to improve the efficiency of coal-fired power plants.

Status at beginning of project

- Single membrane fabrication and performance testing;
- Single membrane design with traditional architecture, material system, and microstructure;
- No stack/module designs with traditional single membrane cells.

Technology benchmarking (for air separation and oxygen production)

- Cryogenic distillation;
- Pressure swing adsorption;
- Ceramic permeation membrane;
 - Simple system: dense mixed conducting membranes;
 - Producing high purity oxygen from air;
 - Economically competitive technology.

- New membrane design with novel architecture, material system, and microstructure;
- Significantly reduce capital cost of membrane cell and operating cost;
- Potentially improve reliability, durability, and endurance;
- Potentially enhance performance;
- Enabling flexible up-scaling for stack/module.
- No change of project goal/objectives;
- Market need: in addition to coal-fired power plants, oxygen has wide applications in industries

- "Fabrication and characterization of an asymmetrical hollow fiber membrane for air separation and oxygen production", 4th Global Congress & Expo on Materials Science and Nanoscience, Amsterdam, Netherlands, Oct. 2018. (invited talk)
- "An asymmetrical hollow fiber membrane for oxygen permeation", Collaborative Conference on Materials Science and Technology, Beijing, China, Sept. 2018. (invited talk)
- Journal of The Electrochemical Society, 165 (13) F1032-F1042 (2018).
- Journal of Solid State Electrochemistry, 2018, 22:2929-2943.

- Perovskite $BaCo_{0.7}Fe_{0.3-x}Yb_xO_{3-\delta}$ δ (x =0, 0.05, 0.10 and 0.15) BCF, BCFYb5, BCFYb10 and BCFYb15 (a); details of the selected 2 θ range of 30-32° (b).
- XRD pattern and Rietveld refinement of BCFYb10

	x=0.05	x=0.10	x=0.15
a (Å)	4.1042(7)	4.1153(5)	4.1367(7)
V(ų)	69.136(56)	69.698(00)	70.791(99)
GOF (χ²)	4.59	4.93	4.92
R _F (%)	3.15	2.57	2.56
R _{wp} (%)	3.59	3.77	3.82

- impurity phase Fe_3O_4 generated in $BaCo_{0.7}Fe_{0.3}O_{3-}$ $_{\delta}$ sample due to large ionic size mismatch between Ba and Co/Fe;
- Very small amount of Yb-doping effectively stabilized the cubic structure of BaCo_{0.7}Fe_{0.3}O_{3-δ} to room temperature;
- Yb B-site doping shifted peak to lower angles, increased lattice parameter and cell volume.

- Sintering ability of bulk materials
 - Surface (a, b and c) and cross-section (d, e and f) SEM images of bulk BCFYb5 (a, d), BCFYb10 (b, e) and BCFYb15 (c, f) sintered at 1190 °C in air for 6 h.
 - Measurement results: Relative densities of BCFYb5, BCFYb10 and BCFYb15 pellets reached 95.72%, 93.58% and 89.21% respectively;
 - Increasing Yb content, the pellets became harder to densify and average grain size decreased.

- Sintering ability of bulk materials
 - Surface (a, b and c) and cross-section (d, e and f) SEM images of bulk BCFYb5 (a, d) sintered at 1190 °C in air for 6 h, bulk BCFYb10 (b, e) sintered at 1220 °C in air for 6 h and bulk BCFYb15 (c, f) sintered at 1260 °C in air for 6 h;
 - Yb dopant is a sintering inhibitor;
 - The competing effect of Yb inhibiting and sintering temperature leads to increased average grain size.

- Temperature dependent electrical conductivity of bulk in air
 - 150-450 °C, conductivity increased exponentially with temperatures; beyond 450 °C, increased in a little bit low rate. Arrhenius plot showed two regions with different Ea;
 - Mixed conductor: co-presence of electron holes and oxygen vacancies; high temp loss lattice oxygen and partial annihilation of electron holes; lead to observable conductivity change@450 °C;
 - Charge carriers conducted through route of strongly overlapped B-O-B bond, and Zerner double exchange process of $B^{n+}-O^{2-}-B^{(n+1)+} \rightarrow B^{(n+1)+}-O^{-}-B^{(n+1)+} \rightarrow B^{(n+1)+}-O^{2-}-B^{n+}$.

- Sintering temperature effect on porous surface electro-catalytic property
 - Symmetrical cells BCFYb10|SDC|BCFYb10 sintered at 1050 °C (a), 1100 °C (b) and 1150 °C (c) in air for 2 h;
 - Electrochemical impedance spectra at different temperatures in air;
 - Arrhenius plots of polarization resistance measured at 600-750 °C.

- Sintering temperature effect on porous surface electro-catalytic property
 - Symmetrical cells sintered at 1100 °C in air for 2 h: BCFYb5 (a), BCFYb10 (b) and BCFYb15 (c) cathode on SDC electrolyte;
 - Arrhenius plots of polarization resistance measured at 600-750 °C.
 - BCFYb10 demonstrated better performance: lower Rp and Ea

- Dissociation: $O_{2,ad} \leftrightarrow 2O_{ad}$;
- Charge transfer: $O_{ad} + 2e^- + V_0^{..} \leftrightarrow O_0^{\times}$;
- Reaction order: (a) close to 0.5, primarily contributed by dissociation;
- Reaction order: (b) close to 0.25, charge transfer process;
- Surface exchange processes
 - polarization resistance vs. applied oxygen partial pressure at different temperatures, and corresponding reaction orders;
 - (a) polarization resistance associated with high frequency arc;
 - (b) polarization associated with low frequency arc;

- Surface exchange processes: dominant process for BCFYb10
 - Arrhenius plot of polarization resistance under different oxygen partial pressures;
 - (a) Ea in range of 1.04~1.07 eV for surface oxygen dissociation process;
 - (b) Ea in range of 0.089~0.092 eV for charge transfer process;
 - Oxygen dissociation is a dominant process;

- Durability test for BCFYb10 in air at 700 °C for over 120 h
 - EIS was measured intermittently during the test;
 - Ohmic resistance slightly decreased probably due to thermal aging of various bonding;
 - Polarization resistance remained relatively constant, indicating good stability of BCFYb10.

UNIVERSITY OF SOUTH CAROLINA

Solution preparation for functional layer coatings

- Fabrications of multiple functional layers for single membranes
 - Thin functional layers;
 - Porous layer and dense layer exist alternatively.

- Fabrications of multiple functional layers for single membranes
 - Optimizations for fabrication processes;
 - Challenge: fabrication of thin film dense layer on porous functional layer.

- Fabrications of multiple functional layers for single membranes
 - Optimizations for fabrication processes;
 - Challenge: fabrication of thin film dense layer on porous functional layer.

- Further screening materials for membrane applications;
- Finish up optimizations of fabrications for multiple functional layers and single membrane cells;
- Testing and characterization of single membranes;
- Assembly of stacks with single membranes;
- Stack testing and characterizations;
- Modeling and analysis.

- Oxygen has wide applications in industries:
 - Energy (oxygen combustion/gasification, improve efficiency, enable CO2 capture, etc.);
 - Manufacturing (metal production, glass production, welding, plasma cutting, pulp and paper production, refining)
 - Environmental (water and wastewater treatment);
 - Healthcare
 - Others (chemicals, pharmaceutical and biotechnology, etc.)
- Oxygen needs are/will be intensive in these industries.
 - Technology advancement and/or Innovations are needed to fulfill these needs.
- The technology studied in this project:
 - Low cost, reliable technology for high purity oxygen production from air;
 - Has up-scaling flexibility for oxygen production at different scales.

- The technology, if successful, can be directly integrated into gasification based power plant system to achieve FE goals/objectives:
 - As an oxygen supply module integrated into the system (replace air supply unit);
 - Improve efficiency of power plant system (no nitrogen involvement);
 - Enable cost-effective, efficient, and reliable CO2 separation and capture.
- The technology can also be a stand-alone oxygen production unit/system
 - Can be scaled for oxygen production at different scales (directly transferred to market);
 - Relevant companies (Praxair, Airgas) might be interested in this technology (integrated into their oxygen production systems);
- Remaining technology challenges:
 - Fabrication process optimization for single membranes;
 - Stack assembly, testing, and characterization;
 - Modeling and analysis.

Concluding Remarks

• Applicability to Fossil Energy and alignment to strategic goals

- Low cost technology for pure oxygen production from air;
- Up-scaling flexibility (stack, module);
- Can be used as oxygen supply unit, incorporated into gasification based power plant system; (replace air supply unit)
- Improve efficiency of power plant system;
- No nitrogen involved in the system, enable cost-effective, efficient, and reliable CO2 separation/capture.

• Project's next steps and current technical challenges

- Keep doing what were planned in the project;
 - Single membranes: fabrication, testing, characterization;
 - Stack assembly, testing, and characterization;
 - Modeling and analysis
- Current technical challenges;
 - Technical challenges could pop-up during the course;
 - E.g., fabrication process optimization: takes longer time than planned due to complexity of process

Acknowledgments

DE-FE0031473

Post-docs and Graduates