Pilot Testing of a Modular Oxygen Production System Using Oxygen Binding Adsorbents

DE-FE0031527

S. James Zhou April 9, 2019

delivering the promise of science for global good

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Objective: The design, fabrication, and testing of a 10 to 20 kg/day modular oxygen (O_2) production system

- Be cost competitive with current state-of-art process
- Modular process for small scale oxygen production
- Sorbent bed-factor less than 600 lb-sorbent/TPD O₂ (tons/day O₂)
- O₂ purity greater than 95%

Specific Challenges

- Rapid PSA cycle development
- Structured sorbent module development
- Rapid cycle modeling tool development and cycle optimization
- · Material and module scale up and manufacturing
- Design and fabrication of pilot O₂ production system
- Parametric and long-term testing
- Techno-economic analysis

Timeframe: 12/1/2017 to 11/30/2020

- Modular O₂ production
- O₂ binding materials
- Structured adsorbent beds
- Rapid PSA cycles,
- Tools to optimize the structured bed and rapid PSA cycles
- Pilot system testing
- Techno-economic analysis

Adsorbent Properties and Projected Operation Conditions				
	Units	Projected Performance		
Material Properties				
Adsorbent materials		Complexed cobalt solids with permanent mesoporosity, Co-PEI complexes on silica support, and Li- exchanged zeolite		
Adsorbent O ₂ capacity	Wt%	>0.5		
Operating Conditions				
Feed gas	-	Air		
Temperature	°C	20–40		
Pressure (adsorption)	kPa	Absorber: ~120 to 1,000 kPa; Regeneration: under vacuum (0.1–0.5 kPa) or atmospheric pressure		
Process (adsorption)		Vacuum-swing adsorption or PSA		

Success Criteria

- 1. Structured sorben stable >1,000 rapid sorption/desorption cycles
- 2. BSF<600
- 3. Target O₂ production cost \leq \$46.74/ton O₂ (1996 Constant dollar), \$61.49 in 2016\$

(cost benchmark for state-of-the-art cryogenic air distillation)

Process design package & final techno-economic analysis for full-scale, modular, rapid-cycle PSA O_2 production system using novel structured sorbent to produce 10-50 TPD of high-purity (\geq 95%) O_2 from air as the oxygen feed for DOE's 1- to 5-MW oxygen-blown REMS gasifier skid for power generation

RTI PSA System

Wide range of VPSA (Vacuum Pressure Swing Adsorption) testing capabilities

• While O₂ in air is adsorbed at sorbent in Reactor-1, product N₂ purity is monitored via effluent O₂ analyzer; meanwhile Reactor-2 is evacuated through vacuum for regeneration

Sorbent and Structured Sorbent Module Development and Characterization

Air Liquide Objectives:

- Develop and characterize structured adsorbents formulations using commercial adsorbents
- Develop and characterize structured adsorbents beds
- Manufacture and ship 2 to 4 structured adsorbers for pilot testing
- Support activities (e.g. Pilot design, operating parameters for traditional adsorbents)

Sorbent and Structured Sorbent Module Development and Characterization

Air Liquide

Air Dehumidification:

 <u>2 options</u>: activated alumina (AA) or silica gel (SG)

Multi-Step Approach

- Selection of powdery sources of AA and SG
- Characterization (Water isotherm)
- Sources with adequate capacity can be formed with a binder

Results

- H₂O capacity of AA powder is below expectation
- H₂O capacity of SG powder meets expectation

Next steps

- Form SG powder with a binder
- Make / characterize SG structured adsorbent bed

RH (%)

Sorbent and Structured Sorbent Module Development and Characterization

Air Liquide

N₂-Binding Adsorbent

 Various zeolites typically used as N₂ binding adsorbents

Multi-Step Approach

- Selection of zeolite powder
- Forming with binder
- N₂ isotherm carried after activation

Result

 Similar N₂ capacity compared to commercial adsorbents

Next steps

- Generate O₂ isotherm to derive N₂/O₂ selectivity
- Make and characterize Air Liquide structured adsorbent bed

N2 Isotherm on AL Structured Adsorbent

Bead Forming of O₂-Sorbent for PSA Evaluation

Hobart Planetary Blender

N₂-sorbent O₂-sorbent

Optimize Activation Conditions for O₂-Sorbent

 Elevated temperature needed to pre-activate Co-complex to promote active sites readily available for O₂ adsorption, while maintaining molecular structure intact

Breakthrough Testing – Manual Mode

2nd Cycle O₂ Loading:

- Salcomine: 1.09 wt%
- Co-PEI: 0.76 wt%
- SiC (reference): 0.11 wt%

Findings: (1) Commercial Co(II)-salen showed both regenerable O_2 sorption and irreversible sorption; (2) the slopes of reversable portion of breakthrough curves are fast; (3) Confirmed > 0.5 wt% total O_2 loading on both Co-Complex sorbents

VPSA Cyclic Testing

Achieved 95% O₂ purity of cyclic sorption efficiency

- Reactor temperature profile reflecting the heat of adsorption
- T rose at adsorption step and dropped at regeneration step
- Effluent O₂ concentration showing quick drop when air (21% O₂) passing through sorbent
- O₂ concentration reached 1.3%, indicating 95% product purity in effluent gas

O₂ Pilot Plant Process Flow Diagram

Technoeconomic Analysis - Results

Parameter		Cost	
Purchased Equipment Cost (PEC)	\$	313,300	
Installation Cost (Matls + Labor)	\$	432,200	
Total Installed Costs	\$	745,500	
EPC (8% of TIC)	\$	59,640	
Contingency (15% of TIC+BEC)	\$	120,770	
Total Plant Cost (TPC)		925,910	
Taxes & Insurance (2% of TPC)	\$	18518	
Spare parts (0.5% of TPC)	\$	4630	
Financing Costs (2.7% of TPC)	\$	25000	
Initial sorbent fill	\$	42,972	
Total Owner's Cost	\$1,017,030		
OPEX (Electricity costs) (\$8.00/MWh)	\$	91,250	

Levelized Cost of O₂

 $\frac{\text{TOC}^{*} \text{ CCF} + \text{VOPEX}^{*}\text{CF}}{\text{O}_{2} \text{ Production }^{*} \text{ CF}}$

where TOC = Total Owner's Cost CCF = Capital Charge Factor VOPEX = Variable Operating costs CF = Capacity factor

Levelized Cost of $O_2 = 59.4 /ton of O_2 SOTA $O_2 = 61.49 /ton O_2 in 2016\$

- CAPEX estimated using Aspen Process Economics Analyzer
- Cost of electricity takes from DOE's Annual Energy Outlook, 2019 for electricity costs for industrial sector

- Financial support provided by DOE NETL under DE-FE0027995 & DE-FE0031527
 U.S. DEPARTMENT OF ENERGY
- DOE Project Manager: Diane Madden
- RTI cost share and project partner Air Liquide

Thank you!

S. James Zhou, Ph.D.

RTI International

Chief Science Officer Center of Technology for Energy, Environment, and Engineering 3040 E Cornwallis Road Research Triangle Park, NC 27709-2194 T: (919) 485-2601 Email: szhou@rti.org