Oxygen Binding Materials and Highly Efficient Modular System for Oxygen Production

DE-FE-0027995

S. James Zhou, Qinghe Zheng, Jianping Shen, Vijay Gupta, and Marty Lail

April 9, 2019

delivering the promise of science for global good

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Project Summary

Objective: Develop a process for efficient O₂ separation from air using adsorbents or membranes with oxygen carriers to produce high purity oxygen

- Process can be scaled up in modular form or in large-scale industrial processes
- Process should be competitive with current state-of-the-art processes
- Sorbent bed-factor of less than 600 lb-sorbent/TPD O₂ (tons/day O₂)
- An O₂/N₂ separation factor greater than 20 for membranes

Specific Challenges:

- Develop reversible oxygen binding solid materials with high O₂ capacity and selectivity
- Translate the reversible oxygen adsorption property of cobalt complexes to solid adsorbent or membrane form
- Optimize the chemical kinetics of oxygen adsorption on the sorbent
- Optimize the coordination environment of cobalt on the surface of the sorbent
- Determine oxygen separation process performances
- Consider use of the solid reversible oxygen binding materials on the surface of a membrane for oxygen separation at ambient temperatures

Oxygen Separation Processes

- Vacuum-swing adsorption process can be used with the O₂ sorbents developed as indicated by the adsorption isotherm
- Membrane separation process is a partial pressure driven process and requires high feed-side pressure and low permeate-side pressure. In this case, a vacuum pressure can be used for the permeate side

Our Innovation

- Materials that selectively adsorb/bind oxygen
- Vacuum-pressure-swing adsorption (VPSA) process can be used with the O₂ sorbents developed as indicated by the adsorption isotherm
- Higher purity oxygen product stream
- Higher oxygen recovery rate
- No need to treat the larger stream of nitrogen
- Possible to produce pure N₂ at the same time

Success Criteria

```
(1)O_2 capacity > 0.5 wt%,
```

```
(2)BSF<600,
```

(3) Design and cost of a 5 TPD modular air separation unit,

(4)A techno-economic analysis conducted for modular

systems that produces 5 to 50 TPD O_2 .

Influence of Preparation Parameters Oxygen Capacity of Supported Co-PEI Solid Sorbents (50%)

N₂-Air Isothermal Curves of Co-PEI/Support @RT

> Co-PEI oxygen capacity remains reasonable oxygen capacity in air

Cyclic capacity of RTI novel Co(II) Schiff compounds

- **O₂ sorption capacity** up to 1.13 wt% (7.91 mL O₂/g sorbent) over 10 min cycle;
- Improved desorption kinetics compared to CoSalen;
- Reversible O₂ sorption by variation of p(O₂) at room temperature;
- **Stable cyclic** performance (at least 100 cycles).

Zheng, Q.; Lail, M.; Zhou, S.; *et al.* Lithiated five-coordinated Cobalt(II) Schiff Compounds for reversible room temperature dioxygen binding. *Manuscript under preparation.*

ASAP isotherms of RTI novel Co(II) Schiff compounds

Zheng, Q.; Lail, M.; Zhou, S.; et al. Lithiated five-coordinated Cobalt(II) Schiff Compounds for reversible room temperature dioxygen binding. *Manuscript under preparation*.

Technoeconomic Analysis - Process Layout

- CAPEX estimate does not include the cryogenic storage tanks for O₂ and N₂
- Product O₂ is assumed to be available at atmospheric pressure.

Technoeconomic Analysis - Design Basis

Process Parameter	Value
O ₂ Production rate	10 TPD
# adsorber beds	2
Bed working capacity	0.5 wt%
Cycle time	60 sec
% Recovery	60%
O ₂ purity	95%
Bed Size Factor (BSF)	600
Adsorption Pressure	4 bar
Desorption Pressure	0.345 bar
Product O ₂ pressure	1.013 bar

Financial Analysis Parameter	Value
Financial Basis for reporting	2016 \$
Adsorbent cost	\$15/kg
Plant Capacity Factor	90%
Capital Charge Factor	0.111
Cost of electricity**	\$67.6/MWh
EPC costs (as % of installed costs)	8%
Contingency	15%

Labor costs for operating the plants are assumed to be negligible

**Average price of electricity for industrial users, Annual Energy Outlook 2019 https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_3

Technoeconomic Analysis - Results

Parameter	Cost	
Purchased Equipment Cost (PEC)	\$	313,300
Installation Cost (Matls + Labor)	\$	432,200
Total Installed Costs	\$	745,500
EPC (8% of TIC)	\$	59,640
Contingency (15% of TIC+BEC)	\$	120,770
Total Plant Cost (TPC)	\$	925,910
Taxes & Insurance (2% of TPC)	\$	18518
Spare parts (0.5% of TPC)	\$	4630
Financing Costs (2.7% of TPC)	\$	25000
Initial sorbent fill	\$	42,972
Total Owner's Cost	\$1	,017,030
OPEX (Electricity costs) (\$8.00/MWh)	\$	91,250

Levelized Cost of O₂

 $\frac{\text{TOC}^{*} \text{ CCF} + \text{VOPEX}^{*}\text{CF}}{\text{O}_{2} \text{ Production }^{*} \text{ CF}}$

where TOC = Total Owner's Cost CCF = Capital Charge Factor VOPEX = Variable Operating costs CF = Capacity factor

Levelized Cost of $O_2 = $59.4/\text{ton of } O_2$

- CAPEX estimated using Aspen Process Economics Analyzer
- Cost of electricity takes from DOE's Annual Energy Outlook, 2019 for electricity costs for industrial sector

Technoeconomic Analysis – Sensitivity Analysis

Cost O_2 is most sensitive to the CAPEX and cost of electricity. Cost of O_2 is relatively insensitive to adsorbent cost

Key Technical Challenges and Solutions

- **1.** Improvement in O₂ binding/releasing kinetics
- Optimize O₂ material physical and chemical properties and its morphology for fast O₂ binding and releasing kinetics;
- Use mesoporous/microporous support to anchor the Co complexes on the surface to promote pore/surface/gas-phase diffusion, which is known be much faster than lattice diffusion.
- 2. Improvement in O₂ binding reversibility
- Optimize material composition (less prone to auto-oxidation or moisture poisoning)
- Optimize process condition (temperature, pressure, cycle time, flow rate, etc.)
- 3. Improvement in material stability
- Test promising materials over long test cycles (~100 hours or more) to evaluate their performance stability.

Project Wrap Up - Key Findings to Date

- 1. Developed multiple synthesis routes for O₂ binding solid materials
- 2. Synthesis optimization in progress for:
 - □ High O₂ adsorption capacity (already reached 0.5 wt% BP1 target)
 - Enhanced O₂ binding reversibility
 - □ Improved material stability
 - Efficient and economic synthesis routes
- 3. Materials selected for further performance evaluation
 - □ Co-PEI type solid sorbents
 - Co-Schiff base type solid sorbents
- 4. Cost of O₂ production
 - □ \$59.4/ton O₂ (2016\$) at 10 ton/day
 - □ \$61.49 (2016\$) at 4,900 t/day for 550 MW plant ASU production cost

• Financial support provided by DOE NETL under DE-FE0027995

• DOE Project Manager: Diane Madden

• RTI cost share and project partner Air Liquide

Thank you!

S. James Zhou, Ph.D.

RTI International

Chief Science Officer Center of Technology for Energy, Environment, and Engineering 3040 E Cornwallis Road Research Triangle Park, NC 27709-2194 T: (919) 485-2601 Email: szhou@rti.org

