Warm Gas Multi-contaminant Removal System (Contract No. DE-SC0008243)

Gökhan Alptekin, PhD TDA Research, Inc. Wheat Ridge, CO galptekin@tda.com

2019 Crosscutting Research Program Gasification Systems Project Review

April 9, 2019

Project Objectives

- The project objective is to demonstrate techno-economic viability of a synthesis gas purification system to eliminate potential catalyst poisons and environmental pollutants from coal-derived synthesis gas
 - A high temperature sorbent is used for operation above the dew point of the synthesis gas
 - The sorbent is operated in a regenerable manner for NH₃ and Hg
 - All other contaminants (trace metals, HCN etc.) is removed irreversibly

Project Tasks

- Scale-up the production of the sorbent
- Carry out multiple cycle to demonstrate long-term durability of the sorbent
- Design a slipstream test unit for proof-of concept evaluations
 - 1 to 10 SCFM raw synthesis gas treatment capacity
- Complete a high fidelity process design and economic analysis

Project Duration

- 3 years
- Completion Date 08/01/2019

Background

Coal-derived synthesis gas contains a myriad of trace metal contaminants

Typical Metal Contaminants in Coal

Coal Type	Hg	As	Se	Cd
	(ppm)	(ppm)	(ppm)	(ppm)
Pittsburg	0.11	4.1	0.6	0.06
Elkhorn/Hazard	0.13	4.0	3.1	0.31
Illinois No.6	0.22	2.7	2.2	0.15
Wyodak	0.19	1.3	1.6	0.30

Bool et al., 1997

- Removal of trace metals is critical to control emissions from advanced power cycles that use coal-derived synthesis gas feed
 - Mercury is singled-out for particular scrutiny because of its effects on humans and wildlife
- The nitrogen in the coal is converted to the NH₃ and HCN which will be converted into NOx in an IGCC plant
- Removal of metal contaminants and NH₃/HCN is also important for chemical manufacturing processes
 - Arsenic, HCN, NH₃ are a potent poisons for the catalysts used in the WGS and Fischer Tropsch synthesis

Warm Gas Contaminant Removal

- NH₃ removal is commonly accomplished by using a water scrubber, where NH₃ is reacted with a mildly acidic solution to be converted into a stable salt solution
- These scrubbers typically run at low temperature to increase the NH₃ solubility (the critical first step is the dissolution of NH₃ in the scrubbing solution)
- These scrubbers do not reduce the NH₃ concentration to very low levels and do not remove contaminants such as hydrogen cyanide (HCN)
- For trace metals, the existing clean-up technologies based on physical adsorbents are also limited to low temperatures
- The objective is to develop a sorbent-based for <u>warm gas</u> clean-up technology
 - □ For a GE gasifier with water quench, the dew point is ~245°C (480°F)
- Warm temperature gas cleaning has major benefits:
 - Improves the efficiency of the power cycle
 - Eliminate the need for any heat exchange equipment
 - Eliminate the difficulties processing the condensate

Equilibrium Compositions of Trace Metals Over New Sorbent

- Hg (also Se) has a very high vapor pressure over any surface at 200°C or higher temperatures (i.e., difficult to achieve high removal efficiency)
 - The resulting low capacity increases the cost of using expendable sorbents
- NH₃ removal using one-time use sorbents is also impractical as it is present in relatively high concentrations (200 to 1500 ppmv range)

TDA's Multi-contaminant Removal Process

- Hg and NH₃ are removed at high temperature
- The sorbent is regenerated using a combination of temperature and pressure swing
- The off-gas from the sorbent bed is cooled enabling the use of low temperature sorbents or scrubbers

Early Testing at UNDEERC

- Operation of the regenerable Hg sorbent has been demonstrated in two test campaigns at UNDEERC
 - SUFCo bituminous (May 2008)
 - Oak Hills Lignite (June 2008)
- Specifications of EERC Transport reactor demonstration unit (TRDU)
 - Operating P=125 psig
 - 10,000 SCFH syngas treatment

Test Results at UNDEERC

TDA Sorbent, T=215°C (420°F)

- TDA sorbent achieved over 95% Hg removal efficiency and outperformed commercial halogenated carbon
 - EERC Report November 2007
 "Gasification of Lignites to Produce Liquid Fuels, Hydrogen and Power"
- Stable operation over 10 cycles at UNDEERC and over 30 at TDA

Key R&D Needs

- Demonstrating the combined NH₃ and Hg removal capability using a regenerable sorbent
 - Optimize and scale-up the sorbent
 - Laboratory experiments
 - Demonstrate long-term durability of the sorbent over many cycles
 - Slipstream evaluations using actual coal-derived synthesis gas for proof-of concept evaluations
 - Complete a high fidelity process design and economic analysis

Sorbent Development and Scale-up

- Sorbent production was scaled up using high throughput manufacturing equipment
- Batch size 80 kg
- Final product 1/16" cylindrical extrudates with very high mechanical integrity
- Crush strength >2 lbf/mm
- (1/8" or 1/4" size is also possible)

Setup Used in Contaminant Removal Tests

- High T/High P test rig capable of simulating synthesis gas compositions
- Nova Analyzer for H₂, CO, CO₂, CH₄ measurements
- SPM/Honeywell analyzer was used for AsH₃ and HCN detection
- Tekran 330 CEM for Hg analysis

Typical Test Profile – NH₃ Removal

Regenerable NH₃ Removal

Adsorption: T=200-250°C, P=100 psig, NH_3 Inlet = 2,000 ppmv, GHSV=2,000 h⁻¹,

simulated synthesis gas

Regeneration: T= 250-300°C, P=10 psig under N_2 flow, GHSV = 200 h⁻¹

TDA sorbent maintained a stable capacity ~700 cycles (achieving over 5% wt. NH₃ capacity)

13

Hg Removal

Absorption: T= 240°C, P = 2.5 psig, Hg = 70 ug/m³, GHSV = 3,000 h⁻¹ Regeneration: T= 280°C, P=1 psig under N₂ flow, GHSV = 200 h⁻¹

TDA sorbent also maintains a stable capacity for Hg over multiple cycles
 (3 cycles were completed to demonstrate the concept)

HCN and AsH₃ Removal

T = 240°C, HCN = 10 ppmv, P= 300 psig, GHSV = 7,500 h⁻¹

Sorbent also achieved over 3% wt. HCN capacity with very high removal efficiency

T= 245°C, P= 350 psig, AsH₃ Inlet= 1.22 ppmv, H₂S Inlet= 20-4,800 ppmv, GHSV= $180,000 \text{ h}^{-1}$

- In presence of 20 ppmv H₂S, 7.1% wt. capacity was achieved (at breakthrough)
 - Sorbent also achieved 8.5% wt. sulfur capacity

Testing at NCCC/PSDF In a 4-Bed PSA

4-bed PSA Skid

Gas Conditioning Skid

 A 4-bed PSA field unit designed to evaluate a pre-combustion CO₂ removal sorbent qualified for use at NCCC/PSDF is used for proof-of-concept evaluations

Field Test Units Installed at NCCC

NCCC Test Results

Adsorption: T=200-250°C, P=100 psig, NH_3 Inlet = 2,000 ppmv, GHSV=2,000 h⁻¹,

simulated synthesis gas

Regeneration: T= 250-300°C, P=10 psig under N_2 flow, GHSV = 200 h⁻¹

- Three cycles were performed by "only" applying pressure swing
- First cycle had a very high capacity as in the consecutive ones sorbent is not fully regenerated

P&ID of the New Test Unit

Prototype Control System

Fabrication of the Test Unit

- A slipstream test unit is being fabricated to demonstrate continuous removal of NH₃ and Hg using coal derived synthesis gas
- Originally, we have designed a unit that is capable of treating 10 SCFM of synthesis gas for testing at the NCCC
- A smaller unit is now being built to treat up to 1 SCFM synthesis gas

Engineering and Cost Analysis

- Design Basis = 550 MW IGCC Plant
 - NH₃ Concentration = 1,300 ppmw
 - Hg Concentration = 52 ppbw
 - AsH₃ Concentration = 1 ppmw
 - HCN Concentration = 1 ppmw

Labor Cost	\$	212,212	
Operating Labor	\$	124,830	1 person-3 shift/\$20/hr
Supervising Labor	\$	18,725	15% operating labor
Maintenance Labor	\$	68,657	55% operating labor
Maintenance Materials		395,351	1% of TCC
Sorbent Replacement Cost	\$	1,228,241	
Regenerable Sorbent Cost			\$12/L
Expendable Sorbent Cost			\$7.5/L
NH3 Scrubbing Solution Cost		\$45,261	
Scrubbing Solution Unit Cost			\$200/tonne
Power Cost		423,142	@ \$0.05/kWh
Overhead		121,512	20% of Direct O&M Labor Cost
Taxes, Insurance, Administrative 1,281,405			4% of the Capital Cost
Total O&M Cost	\$	3,707,124	
Total Capital Cost	\$	32,035,125	
Capital Recovery Cost	\$	6,407,025	20% capital recovery factor
Annual Operating Cost	\$	10,114,149	

The cost of removing NH₃, Hg, AsH₃ and HCN contaminants are estimated as ~\$3.7 MM per year (\$10.1 MM with annualized capital cost)

Acknowledgement

- NETL, Project Manager, Diane Madden
- □ Frank Morton, NCCC