

A Robotics-Enabled Eddy Current Testing System for **Autonomous Inspection of Heat Exchanger Tubes**

Jian Lin*, Ming Xin

Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 *Email: linjian@missouri.edu

Proposed Work

Challenges for the current testing system:

- The testing process needs well-trained technicians to operate.
- The collected data may be inconsistent due to varying insertion and extraction speeds of the eddy current tester (ECT) probe.
- Decision making essentially relies on the technician's experience instead of taking account of the historical data, thus the decision may not be based on the true status of the tubes.

Proposed Approach:

- Developing an imaging system that can identify geometry and locations of heat exchange tubes.
- Developing an adaptive control system that precisely controls the position and motion speed of ECT probes.
- Developing a machine learning tool to facilitate data analysis and real-time decision making for autonomous inspection.

Evaluating sensing performance of the eddy current tester integrated with the robotic platform.

mistrasgroup.co.uk)

Task 1: Image Recognition

Research Outcome:

- Developed an image recognition algorithm, which can successfully recognize the different configuration of heat exchanger tube sheet. Future work:
- Calibrate new arrived camera and convert the pixel information to actual location.
- Convert the tube dimension into a moving command and perform the command via computer.

Task 2: Robotic Platform Design

Research Outcome:

- update to second version.
- Reduce the number of actuators from 5 to 2 to reduce complexity.
- Add 4WD omni-wheel design to improve mobility.
- Update the new probe holder design adaptive to different diameter of eddy current probe.
- Perform FEA simulation to confirm the design is reasonable and strong enough to hold all the components.

Future work:

Start to assemble all the components including electronics.

Figure 3. Image processing steps for recognizing geometry and location of tubes' inlets.

	Quantity	Detection quantity	Average radius (a.u.)	Accuracy (%)
Case a	20	20	13.023	100
Case b	20	20	15.018	100
Case c	16	16	14.528	100
Case d	27	27	13.100	100

Figure 4. The quantification of image recognition result of case a, b, c and d.

Figure 5. Scheme of a robotics enabled eddy current testing apparatus

Task 3: Machine learning algorithm for classification

Summary

Data:

Proposed a data augmentation mechanism using Gaussian mixture distribution to synthesize experimental spectra based on theoretical data for material classification.

Neural Network:

Created a one-dimensional

group attended 2019: research February training on demonstration of exchange heat

convolutional neural network using a

structure similar to Google Inception

network for material classification using

spectra data.

Figure 7. Simplified Illustration of

Utilized Neural Network Structure.

tube cleaning and testing in MU power plant. Publication: Y. Dong, C. Wu, C. Zhang, Y. Liu, J. L. Cheng, and J. <u>Lin</u>. Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. *npj Computational*

Materials. 5, 26 (2019).

Acknowledgement: DOE-NETL (Award number: DE-FE0031645)

Figure 6. Comparison on the

theoretical and experimental

Figure 1. Eddy current testing of heat exchange tubes. (Modified from a picture in