The US DOE-FE/NETL eXtremeMAT consortium leverages the unparalleled materials science expertise and capabilities resident within the Department of Energy’s National Laboratory complex to accelerate the development of affordable and durable materials for extreme environment service.

Importance

Life prediction for critical components in plants undergoing cycling conditions (e.g., hold-time fatigue)

Lower cost, higher temperature austenitic alloys – reduce the cost of A-USC power cycles

Performance of thin sheet used in recuperators for sCO₂ power cycles

Opportunity

Utilize world leading NL resources in a focused and coordinated effort.

- Materials design
- High Performance Computing power
- Advanced processing & manufacturing
- In-situ characterization
- Performance assessment at condition

eXtremeMAT: Physics based models coupled with data analytics and machine learning

Anticipated Outcomes:

Tool sets that address the gaps in current physics-based materials modeling, data analytics and machine learning to enable:

- Reliable prediction of materials performance over long service lifetimes in FE power plant environments
- Improved alloy design capability to increase high temperature capability of austenitic steels and alloys, accelerated development of new alloys.

The eXtremeMAT Team

- Lower cost alloys for >650°C service
- Thin section long-term integrity

- Critical for advanced cycles (e.g., sCO₂ power cycles), but also valuable for existing FE power plants

https://edx.netl.doe.gov/eXtremeMAT